scholarly journals Baseline-dependent clock offsets in VLBI data analysis

2021 ◽  
Vol 95 (12) ◽  
Author(s):  
Hana Krásná ◽  
Frédéric Jaron ◽  
Jakob Gruber ◽  
Johannes Böhm ◽  
Axel Nothnagel

AbstractThe primary goal of the geodetic Very Long Baseline Interferometry (VLBI) technique is to provide highly accurate terrestrial and celestial reference frames as well as Earth orientation parameters. In compliance with the concept of VLBI, additional parameters reflecting relative offsets and variations of the atomic clocks of the radio telescopes have to be estimated. In addition, reality shows that in many cases significant offsets appear in the observed group delays for individual baselines which have to be compensated for by estimating so-called baseline-dependent clock offsets (BCOs). For the first time, we systematically investigate the impact of BCOs to stress their importance for all kinds of VLBI data analyses. For our investigations, we concentrate on analyzing data from both legacy networks of the CONT17 campaign. Various aspects of BCOs including their impact on the estimates of geodetically important parameters, such as station coordinates and Earth orientation parameters, are investigated. In addition, some of the theory behind the BCO determination, e.g., the impact of changing the reference clock in the observing network on the BCO estimate is introduced together with the relationship between BCOs and triangle delay closures. In conclusion, missing channels, and here in particular at S band, affecting the ionospheric delay calibration, are identified to be the dominant cause for the occurrence of significant BCOs in VLBI data analysis.

2020 ◽  
Author(s):  
Lisa Lengert ◽  
Hendrik Hellmers ◽  
Claudia Flohrer ◽  
Daniela Thaller ◽  
Alexander Kehm

<p>We present the current activities of the Federal Agency for Cartography and Geodesy (BKG) towards a combined processing of VLBI and GNSS data.  The main goal of the combined analyses of the two different space-geodetic techniques is the improvement of the consistency between the techniques through common parameters, as Earth Orientation Parameters (EOPs), but also station coordinates and tropospheric parameters through local ties and atmospheric ties, respectively.</p><p>The combination of GNSS data with VLBI 24-hour sessions and VLBI Intensive sessions is studied in detail w.r.t. EOPs to exploit he combination benefit to its maximum extend. We analyse the impact of the combination on the technique-specific parameters (e.g. dUT1), but also on common parameters (e.g. LOD, polar motion, station coordinates). When using GNSS data in combination with VLBI Intensive sessions, we can demonstrate an accuracy improvement of the dUT1 time series.</p><p>We also study the combination of troposphere parameters, focusing first on the validation of the technique-specific troposphere parameters at VLBI-GNSS co-located sites and on the modelling of the corresponding atmospheric ties.</p><p>BKGs primary interest is the combination of GNSS and VLBI data on the observation level. However, the current combination efforts are based on the normal equation level using technique-specific SINEX files as a starting point.</p>


2016 ◽  
Vol 101 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Agata Wielgosz ◽  
Monika Tercjak ◽  
Aleksander Brzeziński

Abstract Very Long Baseline Interferometry (VLBI) is the only space geodetic technique capable to realise the Celestial Reference Frame and tie it with the Terrestrial Reference Frame. It is also the only technique, which measures all the Earth Orientation Parameters (EOP) on a regular basis, thus the role of VLBI in determination of the universal time, nutation and polar motion and station coordinates is invaluable. Although geodetic VLBI has been providing observations for more than 30 years, there are no clear guidelines how to deal with the stations or baselines having significantly bigger post-fit residuals than the other ones. In our work we compare the common weighting strategy, using squared formal errors, with strategies involving exclusion or down-weighting of stations or baselines. For that purpose we apply the Vienna VLBI Software VieVS with necessary additional procedures. In our analysis we focus on statistical indicators that might be the criterion of excluding or down-weighting the inferior stations or baselines, as well as on the influence of adopted strategy on the EOP and station coordinates estimation. Our analysis shows that in about 99% of 24-hour VLBI sessions there is no need to exclude any data as the down-weighting procedure is sufficiently efficient. Although results presented here do not clearly indicate the best algorithm, they show strengths and weaknesses of the applied methods and point some limitations of automatic analysis of VLBI data. Moreover, it is also shown that the influence of the adopted weighting strategy is not always clearly reflected in the results of analysis.


2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Hana Krásná ◽  
Leonid Petrov

AbstractWe investigated the suitability of the astronomical 15 GHz Very Long Baseline Array (VLBA) observing program MOJAVE-5 for estimation of geodetic parameters, such as station coordinates and Earth orientation parameters. We processed a concurrent dedicated VLBA geodesy program observed at 2.3 GHz and 8.6 GHz starting on September 2016 through July 2020 as reference dataset. We showed that the baseline length repeatability from MOJAVE-5 experiments is only a factor of 1.5 greater than from the dedicated geodetic dataset and still below 1 ppb. The wrms of the difference of estimated Earth orientation parameters with respect to the reference IERS C04 time series are a factor of 1.3 to 1.8 worse. We isolated three major differences between the datasets in terms of their possible impact on the geodetic results, i.e. the scheduling approach, treatment of the ionospheric delay, and selection of target radio sources. We showed that the major factor causing discrepancies in the estimated geodetic parameters is the different scheduling approach of the datasets. We conclude that systematic errors in MOJAVE-5 dataset are low enough for these data to be used as an excellent testbed for further investigations on the radio source structure effects in geodesy and astrometry.


2021 ◽  
Author(s):  
Jean-Yves Richard ◽  
Christian Bizouard ◽  
Sebastien Lambert ◽  
Olivier Becker

<p>The Earth orientation parameters (EOP), the regular products of IERS Earth Orientation Centre, are computed at daily bases by combination of EOP solutions using different astro-geodetic techniques. At SYRTE we have developed a strategy of combination of the <strong>Global Navigation Satellite Systems</strong> (GNSS) and <strong>Very Long Baseline Interferometry</strong> (VLBI) techniques at normal equation level using Dynamo software maintained by CNES (France). This approach allows to produce the EOP at the daily bases, which contains polar coordinates (x,y) and their rates (x<sub>r</sub>,y<sub>r</sub>), universal time UT1 and its rate LOD, and corrections from IAU2000A/2006 precession-nutation model (dX,dY), and in the same run station coordinates constituting the terrestrial frame (TRF). The recorded EOP solutions obtained from GNSS and VLBI combination at weekly bases is recently maintained by SYRTE.</p><p>The strategy applied to consistently combine the IGS and IVS solutions provided in Sinex format over the time period 2000-2021 are presented and the resulting EOP, station positions (TRF) are analysed and evaluated, differences w.r.t. the individual solutions and the IERS time-series investigated.</p>


Proceedings ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 2
Author(s):  
Víctor Puente ◽  
Esther Azcue ◽  
Susana García-Espada ◽  
Yaiza Gómez-Espada

National Geographic Institute of Spain has a strong background concerning technical aspects of geodetic VLBI. As a step forward in this field, a VLBI analysis team has been set up and tests with different software packages have been carried out. In this sense, two VLBI software packages have been used for experimentation activities in order to compare and validate IGE capability to produce accurate and consistent geodetic products, specifically Earth Orientation Parameters, station coordinates and troposphere delays. The purpose of this contribution is to present the results of these analyses, including some tests to use GNSS-based troposphere delay in VLBI processing and the study of gravitational deformation in Yebes radiotelescope.


1988 ◽  
Vol 128 ◽  
pp. 187-192 ◽  
Author(s):  
A. Mallama ◽  
T. A. Clark ◽  
J. W. Ryan

This study compares the earth orientation results obtained by the NASA CDP and the NGS IRIS experiments. The results agree at about one combined formal error (two milliarcseconds) after small biases (one to three milliarcseconds) have been removed from each component. Furthermore the biases are found to correspond to small rotations between the reference frames, principally the terrestrial frame, for the two sets of experiments. In the past the CDP data has not been used in combined solutions of earth orientation parameters prepared by the data centers at the U.S.N.O. and the B.I.H. The authors propose that these data should be included because they are distinct from the IRIS data and represent an important supplement to those data. We also point out that the total number of observations is about equal in the CDP and IRIS experiment sets.


2021 ◽  
Author(s):  
Jungang Wang ◽  
Kyriakos Balidakis ◽  
Maorong Ge ◽  
Robert Heinkelmann ◽  
Harald Schuh

<p>The terrestrial and celestial reference frames are linked by the Earth Orientation Parameters (EOP), which describe the irregularities of the Earth's rotation and are determined by the space geodetic techniques, namely, Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). The satellite geodetic techniques (SLR, GNSS, and DORIS) cannot determine the UT1-UTC or celestial pole offsets (CPO), rendering VLBI the only technique capable of determining full EOP set. On the other hand, the GNSS technique provides precise polar motion estimates due to the continuous observations from a globally distributed network. Integrating VLBI and GNSS provides the full set of EOP and guarantees a superior accuracy than any single-technique solution.</p><p>In this study we focus on the integrated estimation of the full EOP set from GNSS and VLBI. Using five VLBI continuous observing campaigns (CONT05–CONT17), the GNSS and VLBI observations are processed concurrently in a common least-squares estimator. The impact of applying global ties (EOP), local ties, and tropospheric ties, and combinations thereof is investigated. The polar motion estimates in integrated solution are dominated by the huge GNSS observations, and the accuracy in terms of weighted root mean squares (WRMS) is ~40 μas compared to the IERS 14 C04 product, which is much better than that of the VLBI-only solution. The UT1-UTC and CPO in the integrated solution also show slight improvement compared to the VLBI-only solution. Moreover, the CPO agreement between the two networks in CONT17, i.e., the VLBA and IVS networks, shows an improvement of 20% to 40% in the integrated solution with different types of ties applied.</p>


2000 ◽  
Vol 178 ◽  
pp. 607-612
Author(s):  
P. Yaya ◽  
C. Bizouard ◽  
C. Ron

AbstractA 100-year long optical astrometric series of the Earth Orientation Parameters produced by a Czech team (Vondrák et al., 1998) has been analysed in order to determine components of nutation. Our interest is mostly focused on the long periodic terms: 18.6-year term, 9.3-year term and linear trend, still correlated in VLBI series which cover only the last 20 years. A comparison has been made with the corresponding values determined from the VLBI series.


1996 ◽  
Vol 172 ◽  
pp. 491-496
Author(s):  
J. Vondrák

The indirect method of linking the Hipparcos reference frame to the frame defined by extragalactic sources is described. To this end, two independent time series of Earth orientation parameters observed by two different techniques with respect to the two reference frames are used: a) Optical astrometry observations (referred to Hipparcos stars), b) VLBI observations (referred to extragalactic objects). The parallel use of both techniques during the last decade enables to determine the orientation of the two reference frames at a fixed epoch and their mutual slow rotation with precision of at least 1mas and 1mas/year, respectively. In order not to raise confusion, the potentiality of the method is demonstrated on the example based on the star catalogues originally used at the participating observatories, not on any of the existing preliminary versions of the Hipparcos catalog.


Sign in / Sign up

Export Citation Format

Share Document