Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani

2006 ◽  
Vol 187 (5) ◽  
pp. 351-360 ◽  
Author(s):  
Marco Kai ◽  
Uta Effmert ◽  
Gabriele Berg ◽  
Birgit Piechulla
2006 ◽  
Vol 96 (12) ◽  
pp. 1372-1379 ◽  
Author(s):  
Masahiro Kasuya ◽  
Andriantsoa R. Olivier ◽  
Yoko Ota ◽  
Motoaki Tojo ◽  
Hitoshi Honjo ◽  
...  

Suppressive effects of soil amendment with residues of 12 cultivars of Brassica rapa on damping-off of sugar beet were evaluated in soils infested with Rhizoctonia solani. Residues of clover and peanut were tested as noncruciferous controls. The incidence of damping-off was significantly and consistently suppressed in the soils amended with residues of clover, peanut, and B. rapa subsp. rapifera ‘Saori’, but only the volatile substance produced from water-imbibed residue of cv. Saori exhibited a distinct inhibitory effect on mycelial growth of R. solani. Nonetheless, disease suppression in such residue-amended soils was diminished or nullified when antibacterial antibiotics were applied to the soils, suggesting that proliferation of antagonistic bacteria resident to the soils were responsible for disease suppression. When the seed (pericarps) colonized by R. solani in the infested soil without residues were replanted into the soils amended with such residues, damping-off was suppressed in all cases. In contrast, when seed that had been colonized by microorganisms in the soils containing the residues were replanted into the infested soil, damping-off was not suppressed. The evidence indicates that the laimosphere, but not the spermosphere, is the site for the antagonistic microbial interaction, which is the chief principle of soil suppressiveness against Rhizoctonia damping-off.


2010 ◽  
Vol 50 (1) ◽  
pp. 93-97 ◽  
Author(s):  

Effect of Fungal Metabolites and Amendments on Mycelial Growth ofRhizoctonia SolaniA shift towards organic farming suggests amalgamation of organic resources against soil borne plant pathogens. The influence of metabolites of most ubiquitousAspergillusspp., organic amendment extracts and their combined effect withTrichoderma virenswere evaluatedin vitroagainstRhizoctonia solani.The minimum (36.1 mm) growth was attained byR. solaniin co-culture withA. niger.The maximum (42.3 mm) inhibition of mycelial growth of the test organism was observed with culture filtrate ofA. ochraceousfollowed byA. niger, A. fumigatus, A. flavusandA. terreus.Among organic amendment extractants, castor cake exhibited an additive effect on the growth ofT. virens, however, the maximum (41.8 mm) suppressive effect onR. solaniwas observed with vermicompost. With the advance in time, the effect of organic amendment extracts increased markedly. Inhibition potential of culture filtrate mixturte ofA. niger+T. virensandA. ochraceous+T. virensagainstR. solaniwas significantly higher in comparison to the other combinations.


2017 ◽  
Vol 6 (9) ◽  
pp. 1676 ◽  
Author(s):  
Ramaraju Cherkupally ◽  
Srinivasa Reddy Kota ◽  
Hindumathi Amballa ◽  
Bhumi Narasimha Reddy

The antifungal activity of aqueous extracts of nine plants viz, Azadirachta indica, Parthenium hysterophorus, Momordica charantia, Allium sativum, Eucalyptus globules, Calotropis procera, Aloe vera, Beta vulgaris and Datura stramonium were assessed in vitro against Fusarium oxysporum f. sp. melongenae, Rhizoctonia solani and Macrophomina phaseolina, the soil borne phytopathogens. The assessment of fungitoxic effect was carried out by using three different concentrations i.e., 5, 10 and 20% against the test fungi, in terms of percentage of mycelial growth inhibition. The extract of A. sativum completely inhibited the mycelial growth of M. phaseolina at all the concentrations. The extracts of D. stramonium and E. globulus inhibited the mycelial growth of R. solani of 72%, and 70.7% respectively at 20% concentration, that of A. sativum, E. globulus and D. stramonium exhibited inhibition percentage of 63.3%, 61.8% and 61.1% respectively at 20% concentration on Fusarium oxysporum f. sp. melongenae. The application of plant extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.


2020 ◽  
Vol 158 (3) ◽  
pp. 163-172 ◽  
Author(s):  
Xiangfeng Yao ◽  
Dianlong Shang ◽  
Zhihua Qiao ◽  
Haoyong Yu ◽  
Shiang Sun ◽  
...  

AbstractIn recent years, banded leaf sheath blight in maize (Zea mays L.) has become an important disease that seriously affects quality and yield. This paper aims to evaluate the sensitivity of Rhizoctonia solani Kuhn to thifluzamide on maize, to clarify the effect of seed coating using a thifluzamide suspension agent on safety and physiological indicators and to determine the effectiveness of control of banded leaf sheath blight in the field. In this study, the thifluzamide sensitivity of 102 strains of R. solani in maize from Shandong was determined using the mycelial growth rate method; the average half-maximal effective concentration value (EC50) was 0.086 ± 0.004 μg/ml and displayed a unimodal frequency distribution, indicating that thifluzamide had strong inhibitory activity on the mycelial growth of R. solani in maize. In an indoor pot test, the root activities under 24 g a.i./100 kg seed were found to increase by 78.01%, compared with the control. Similarly, chlorophyll content increased most significantly at this dose, by 32.3%. Thifluzamide (FS) could significantly increase the per-plot yield. Among the examined dosages, 48 g a.i./100 kg seed had the most significant treatment effect, with the yield rate increasing by 15.7% and 14.1%, respectively, in 2017 and 2018 compared with the control. The field effectiveness against banded leaf sheath blight in maize was highest at the dosage of 48 g a.i./100 kg seed for a seed dressing with thifluzamide (FS). These results indicate that thifluzamide has enormous potential for controlling banded leaf sheath blight in maize.


Molecules ◽  
2014 ◽  
Vol 19 (2) ◽  
pp. 1512-1526 ◽  
Author(s):  
Luis Espinoza ◽  
Lautaro Taborga ◽  
Katy Díaz ◽  
Andrés Olea ◽  
Hugo Peña-Cortés

1990 ◽  
Vol 17 (1) ◽  
pp. 28-31 ◽  
Author(s):  
T. B. Brenneman ◽  
A. S. Csinos ◽  
P. M. Phipps

Abstract Ammonium bicarbonate was evaluated for efficacy against southern stem rot and Sclerotinia blight of peanut in Georgia and Virginia, respectively. In vitro studies indicated the material provided little inhibition of mycelial growth by Sclerotinia minor and Sclerotium rolfsii, and negligible inhibition of mycelial growth of Rhizoctonia solani AG-4. However, ammonium bicarbonate did effectively inhibit formation of sclerotia by S. rolfsii in vitro. In the field, it was phytotoxic when applied as a granule or as a foliar spray and in general was not effective in controlling disease or increasing pod yield.


2021 ◽  
Author(s):  
M. Soledade C. Pedras ◽  
Chintamani Thapa ◽  
Sajjad Hossain

The metabolism of benzyl and phenyl glucosinolates by three phytopathogenic fungal species is investigated and established that <i>A. brassicicola </i>metabolized intact benzyl and phenyl glucosinolates and the corresponding desulfo derivatives. Syntheses and spectroscopic characterization of benzyl and phenyl desulfo-glucosinolates are reported. Phenylacetonitrile and benzylisothiocyanate are the first metabolic products of benzyl glucosinolate; benzyl isothiocyanate is further metabolized to 3-benzyl-2-thioxo-2,3-dihydrothiazolidine-4-carboxylic acid.


Author(s):  
Shweta Singh ◽  
Jaiganesh Rengarajan ◽  
Iyappan Sellamuthu

The adverse effect of pesticides used for controlling pests and the diseases caused by them is extensively rising. To overcome this harmful environmental impact, alternative methods are being studied and developed. Out of many possible methods, one effective method is to use plant extracts which embodies natural substances having antifungal properties. In an attempt towards enhancement of sustainable antifungal approach, four different concentrations of four plant extracts Citrus limon, Azadirachta indica, Ocimum gratissimum and Acalypha indica, were tested for their antifungal activity against Rhizoctonia solani, which is a serious threat for plants, and is responsible for considerable crop and yield losses. The aim of this study is to minimize yield losses and to regain the attention of formers towards exploiting natural resources for diseases control. From the results, it can be concluded that different concentrations of plant extracts have caused substantial inhibition in the mycelial growth of R. solani. The leaf extract of Ocimum gratissimum was highly effective in inhibiting mycelial growth, at the concentration of 500mg/ml of extract followed by Citrus limon, Azadirachta indica, and Acalypha indica. These plants might have potential for the development of natural fungicide for the management of diseases caused by fungal pathogens. Also, fungicides developed from these botanical extracts can prove to be highly effective for the management of plant diseases and would be simply obtainable, nonpolluting, biodegradable and economical.


Sign in / Sign up

Export Citation Format

Share Document