scholarly journals Aestuariimicrobium ganziense sp. nov., a new Gram-positive bacterium isolated from soil in the Ganzi Tibetan autonomous prefecture, China

Author(s):  
Yu Geng ◽  
Jiang-Yuan Zhao ◽  
Hui-Ren Yuan ◽  
Le-Le Li ◽  
Meng-Liang Wen ◽  
...  
1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Naomi Shimokawa-Chiba ◽  
Claudia Müller ◽  
Keigo Fujiwara ◽  
Bertrand Beckert ◽  
Koreaki Ito ◽  
...  

AbstractRescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop-codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demonstrates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although BrfA is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems.


2011 ◽  
Vol 78 (2) ◽  
pp. 599-603 ◽  
Author(s):  
Johannes Schneider ◽  
Ana Yepes ◽  
Juan C. Garcia-Betancur ◽  
Isa Westedt ◽  
Benjamin Mielich ◽  
...  

ABSTRACTBacillus subtilisinduces expression of the geneytnPin the presence of the antimicrobial streptomycin, produced by the Gram-positive bacteriumStreptomyces griseus.ytnPencodes a lactonase-homologous protein that is able to inhibit the signaling pathway required for the streptomycin production and development of aerial mycelium inS. griseus.


2007 ◽  
Vol 57 (4) ◽  
pp. 730-737 ◽  
Author(s):  
Abdul Majid Maszenan ◽  
He Long Jiang ◽  
Joo-Hwa Tay ◽  
Peter Schumann ◽  
Reiner M. Kroppenstedt ◽  
...  

A Gram-positive bacterium, designated strain PG-02T, was isolated by serial dilution from aerobic granules obtained from a laboratory-scale sequencing batch reactor for bioremediation of phenolic wastewater. Strain PG-02T grew axenically as cocci and is an oxidase-negative and catalase-positive, non-motile facultative anaerobe. It does not reduce nitrate and grows between 15 and 37 °C, with an optimum temperature of 30 °C. The pH range for growth is between 5.0 and 8.5, with an optimum pH of 7.0. Strain PG-02T contains type A3γ peptidoglycan (ll-A2pm←Gly with alanine at position 1 of the peptide subunit). The G+C content of the DNA is 69 mol%. Menaquinone MK-9(H4) was the major isoprenoid quinone. The polar lipids included diphosphatidylglycerol and phosphatidylglycerol, while 13-methyltetradecanoic acid (i-C15 : 0) and 1,1-dimethoxy-iso-pentadecane (i-C15 : 0 DMA) were the major components in whole-cell methanolysates. PG-02T stained positively for intracellular polyphosphate granules but not poly-β-hydroxyalkanoates. It produces capsular material and possesses an autoaggregation capability. Phenotypic and 16S rRNA gene sequence analyses showed that PG-02T differed from its closest phylogenetic relatives, namely members of the suborder Propionibacterineae, which includes the genera Tessaracoccus, Microlunatus, Luteococcus, Micropruina, Propionibacterium, Propioniferax, Nocardioides, Friedmanniella and Aeromicrobium, and that it should be placed in a new genus and species as Granulicoccus phenolivorans gen. nov., sp. nov. The type strain of Granulicoccus phenolivorans is PG-02T (=ATCC BAA-1292T=DSM 17626T).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yonggang Yang ◽  
Zegao Wang ◽  
Cuifen Gan ◽  
Lasse Hyldgaard Klausen ◽  
Robin Bonné ◽  
...  

AbstractLong-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Silvia Caprari ◽  
Giovanni Minervini ◽  
Valentina Brandi ◽  
Fabio Polticelli

AbstractThe Gram-positive bacterium


2012 ◽  
Vol 13 (4) ◽  
pp. R30 ◽  
Author(s):  
Simen M Kristoffersen ◽  
Chad Haase ◽  
M Ryan Weil ◽  
Karla D Passalacqua ◽  
Faheem Niazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document