scholarly journals Granulicoccus phenolivorans gen. nov., sp. nov., a Gram-positive, phenol-degrading coccus isolated from phenol-degrading aerobic granules

2007 ◽  
Vol 57 (4) ◽  
pp. 730-737 ◽  
Author(s):  
Abdul Majid Maszenan ◽  
He Long Jiang ◽  
Joo-Hwa Tay ◽  
Peter Schumann ◽  
Reiner M. Kroppenstedt ◽  
...  

A Gram-positive bacterium, designated strain PG-02T, was isolated by serial dilution from aerobic granules obtained from a laboratory-scale sequencing batch reactor for bioremediation of phenolic wastewater. Strain PG-02T grew axenically as cocci and is an oxidase-negative and catalase-positive, non-motile facultative anaerobe. It does not reduce nitrate and grows between 15 and 37 °C, with an optimum temperature of 30 °C. The pH range for growth is between 5.0 and 8.5, with an optimum pH of 7.0. Strain PG-02T contains type A3γ peptidoglycan (ll-A2pm←Gly with alanine at position 1 of the peptide subunit). The G+C content of the DNA is 69 mol%. Menaquinone MK-9(H4) was the major isoprenoid quinone. The polar lipids included diphosphatidylglycerol and phosphatidylglycerol, while 13-methyltetradecanoic acid (i-C15 : 0) and 1,1-dimethoxy-iso-pentadecane (i-C15 : 0 DMA) were the major components in whole-cell methanolysates. PG-02T stained positively for intracellular polyphosphate granules but not poly-β-hydroxyalkanoates. It produces capsular material and possesses an autoaggregation capability. Phenotypic and 16S rRNA gene sequence analyses showed that PG-02T differed from its closest phylogenetic relatives, namely members of the suborder Propionibacterineae, which includes the genera Tessaracoccus, Microlunatus, Luteococcus, Micropruina, Propionibacterium, Propioniferax, Nocardioides, Friedmanniella and Aeromicrobium, and that it should be placed in a new genus and species as Granulicoccus phenolivorans gen. nov., sp. nov. The type strain of Granulicoccus phenolivorans is PG-02T (=ATCC BAA-1292T=DSM 17626T).

2005 ◽  
Vol 55 (5) ◽  
pp. 1771-1777 ◽  
Author(s):  
Abdul Majid Maszenan ◽  
Joo-Hwa Tay ◽  
Peter Schumann ◽  
He-Long Jiang ◽  
Stephen Tiong-Lee Tay

A Gram-positive bacterium, designated strain AG019T, was isolated by micromanipulation from aerobic granules obtained from a laboratory-scale sequencing batch reactor. This isolate grew axenically as cocci clustered predominantly in tetrads, and was morphologically similar to the dominant organisms observed in the biomass. The morphology also resembled that of the tetrad-forming organisms commonly seen in activated sludge samples. Strain AG019T was found to be an oxidase-negative, catalase-positive, non-motile aerobe that does not reduce nitrate and grows at temperatures between 15 and 40 °C, with an optimum at 37 °C. The pH range for growth was 5·0–9·0, with an optimum at pH 7·5. Strain AG019T contained a peptidoglycan with directly cross-linked meso-diaminopimelic acid (type A1γ) and lacked mycolic acids. The G+C content of the DNA was 75 mol%. Menaquinone MK-8(H2) was the major isoprenoid quinone. The bacterium stained positively for intracellular polyphosphate granules but not for poly-β-hydroxyalkanoates. It produced capsular material and showed autoaggregation ability. Phenotypic and 16S rRNA gene analyses showed that the bacterium differed sufficiently from its closest phylogenetic relatives, namely members of the suborder Frankineae, which includes the genera Geodermatophilus, Blastococcus, Frankia, Sporichthya, Acidothermus and Microsphaera, that it is proposed that it be placed in a novel genus, Quadrisphaera, as Quadrisphaera granulorum gen. nov., sp. nov. The type strain is AG019T (=ATCC BAA-1104T=DSM 44889T).


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7152
Author(s):  
Fabiola Gómez-Basurto ◽  
Miguel Vital-Jácome ◽  
Elizabeth Selene Gómez-Acata ◽  
Frederic Thalasso ◽  
Marco Luna-Guido ◽  
...  

Microorganisms in aerobic granules formed in sequencing batch reactors (SBR) remove contaminants, such as xenobiotics or dyes, from wastewater. The granules, however, are not stable over time, decreasing the removal of the pollutant. A better understanding of the granule formation and the dynamics of the microorganisms involved will help to optimize the removal of contaminants from wastewater in a SBR. Sequencing the 16S rRNA gene and internal transcribed spacer PCR amplicons revealed that during the acclimation phase the relative abundance of Acinetobacter reached 70.8%. At the start of the granulation phase the relative abundance of Agrobacterium reached 35.9% and that of Dipodascus 89.7% during the mature granule phase. Fluffy granules were detected on day 43. The granules with filamentous overgrowth were not stable and they lysed on day 46 resulting in biomass wash-out. It was found that the reactor operation strategy resulted in stable aerobic granules for 46 days. As the reactor operations remained the same from the mature granule phase to the end of the experiment, the disintegration of the granules after day 46 was due to changes in the microbial community structure and not by the reactor operation.


2006 ◽  
Vol 56 (8) ◽  
pp. 1841-1845 ◽  
Author(s):  
Inês Nunes ◽  
Igor Tiago ◽  
Ana Luísa Pires ◽  
Milton S. da Costa ◽  
António Veríssimo

A Gram-positive bacterium, designated B22T, was isolated from potting soil produced in Portugal. This organism is a catalase-positive, oxidase-negative, motile, spore-forming, aerobic rod that grows optimally at 37 °C and pH 8.0–8.5. Optimal growth occurs in media containing 1 % (w/v) NaCl, although the organism can grow in 0–8 % NaCl. The cell wall peptidoglycan is of the A4α type with a cross-linkage containing d-Asp. The major respiratory quinone is menaquinone 7 and the major fatty acids are anteiso-15 : 0, anteiso-17 : 0 and iso-15 : 0. The DNA G+C content is 37.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain B22T formed a new branch within the family Bacillaceae. The novel isolate is phylogenetically closely related to members of genera of moderately halophilic bacilli and formed a coherent cluster with species of the genera Salinibacillus, Virgibacillus, Oceanobacillus and Lentibacillus, supported by bootstrap analysis at a confidence level of 71 %. Strain B22T exhibited 16S rRNA gene pairwise sequence similarity values of 94.7–94.3 % with members of the genus Salinibacillus, 95.1–92.8 % with members of the genus Virgibacillus, 94.7–93.2 % with members of the genus Oceanobacillus and 93.1–92.3 % with members of the genus Lentibacillus. On the basis of phylogenetic analysis and physiological and biochemical characteristics, it is proposed that strain B22T represents a novel species in a new genus, Paucisalibacillus globulus gen. nov., sp. nov. Strain B22T (=LMG 23148T=CIP 108857T) is the type strain of Paucisalibacillus globulus.


2021 ◽  
Author(s):  
Yu Geng ◽  
Jiang-Yuan Zhao ◽  
Hui-Ren Yuan ◽  
Le-Le Li ◽  
Meng-Liang Wen ◽  
...  

Abstract A novel Gram-stain positive, oval shaped and non-flagellated bacterium, designated YIM S02566T, was isolated from alpine soil in Shadui Towns, Ganzi County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, PR China. Growth occurred at 23–35°C (optimum, 30°C) in the presence of 0.5-4 % (w/v) NaCl (optimum, 1%) and at pH 7.0–8.0 (optimum, pH 7.0). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain YIM S02566T was most closely related to the genus Aestuariimicrobium, with Aestuariimicrobium kwangyangense R27T and Aestuariimicrobium soli D6T as its closest relative (sequence similarities were 96.3% and 95.4%, respectively). YIM S02566T contained LL-diaminopimelic acid in the cell wall. MK-9(H4) was the predominant menaquinone. The major fatty acid patterns were anteiso-C15:0 (60.0%). The major polar lipid was DPG. The genome size of strain YIM S02566T was 3.1 Mb, comprising 3078 predicted genes with a DNA G + C content of 69.0 mol%. Based on these genotypic, chemotaxonomic and phenotypic evidences, strain YIM S02566T was identified as a novel species in the genus Aestuariimicrobium, for which the name Aestuariimicrobium ganziense sp. nov. is proposed. The type strain is YIM S02566T (= CGMCC 1.18751 T =KCTC 49477 T).


2010 ◽  
Vol 60 (2) ◽  
pp. 417-421 ◽  
Author(s):  
Ying Liu ◽  
Jing-Hua Jin ◽  
Yu-Guang Zhou ◽  
Hong-Can Liu ◽  
Zhi-Pei Liu

A Gram-stain-negative, heterotrophic, aerobic, non-spore-forming and non-motile bacterial strain, designated LM5T, was isolated from activated sludge from a sequencing batch reactor for the treatment of effluents contaminated by malachite green. The taxonomy of strain LM5T was studied by phenotypic and phylogenetic methods. Strain LM5T formed orange colonies on R2A and YP plates. Cells were rods, 0.4–0.6 μm in diameter and 0.8–1.2 μm in length. Growth occurred at 10–35 °C (optimum, 20–25 °C), at pH 5.5–9.5 (optimum, pH 6.5–7.5) and in the presence of 0–2 % (w/v) NaCl (optimum, 0.5 %). Oxidase and catalase activities were present. Flexirubin-type pigments were present, but extracellular glycans were absent. MK-6 was the major respiratory quinone. The major fatty acids were iso-C15 : 0 (28.3 %) and iso-C17 : 1 ω9c (13.8 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain LM5T was a member of the genus Flavobacterium with highest sequence similarity to Flavobacterium soli DS-6T (93.2 %) and Flavobacterium lindanitolerans IP-10T (92.9 %). Together with F. lindanitolerans IP-10T, strain LM5T formed a distinct lineage in the phylogenetic tree. The DNA G+C content was 52±0.6 mol% (HPLC), which is significantly higher than that of other species of the genus Flavobacterium (30–41 mol%). Based on phylogenetic and phenotypic evidence, strain LM5T is considered to represent a novel species of the genus Flavobacterium, for which the name Flavobacterium caeni sp. nov. is proposed; the type strain is LM5T (=CGMCC 1.7031T=NBRC 104239T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1206-1210 ◽  
Author(s):  
Cristina Sánchez-Porro ◽  
Pinar Yilmaz ◽  
Rafael R. de la Haba ◽  
Meral Birbir ◽  
Antonio Ventosa

A Gram-positive, moderately halophilic and endospore-forming bacterium, designated strain 18OMT, was isolated from salted animal hides. The cells were rods and produced ellipsoidal endospores at a terminal position. Strain 18OMT was motile, strictly aerobic and grew at 0.5–25 % (w/v) NaCl [optimal growth at 10 % (w/v) NaCl], at between pH 5.0 and 9.0 (optimal growth at pH 7.5) and at temperatures between 15 and 45 °C (optimal growth at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain 18OMT was closely related to species of the genus Thalassobacillus within the phylum Firmicutes. The closest phylogenetic similarity was with Thalassobacillus devorans G-19.1T (98.4 %), Thalassobacillus cyri HS286T (97.9 %) and Thalassobacillus hwangdonensis AD-1T (97.4 %). The major cellular fatty acids were anteiso-C15 : 0 (57.9 %), anteiso-C17 : 0 (14.0 %), iso-C15 : 0 (10.8 %) and iso-C16 : 0 (8.1 %). The respiratory isoprenoid quinones were MK-7 (98.5 %) and MK-6 (1.5 %). The DNA G+C content was 42.9 mol%. These features confirmed the placement of strain 18OMT within the genus Thalassobacillus. The DNA–DNA hybridization values between strain 18OMT and T. devorans G-19.1T, T. cyri HS286T and T. hwangdonensis AD-1T were 49 %, 9 % and 15 %, respectively, showing unequivocally that strain 18OMT constituted a novel genospecies. On the basis of phylogenetic analysis and phenotypic, genotypic and chemotaxonomic characteristics, strain 18OMT is considered to represent a novel species of the genus Thalassobacillus, for which the name Thalassobacillus pellis sp. nov. is proposed. The type strain is 18OMT ( = CECT 7566T = DSM 22784T = JCM 16412T).


2005 ◽  
Vol 55 (4) ◽  
pp. 1693-1696 ◽  
Author(s):  
Matthew D. Collins ◽  
Anna Wiernik ◽  
Enevold Falsen ◽  
Paul A. Lawson

A novel Gram-positive, aerobic, catalase-negative, coccus-shaped organism originating from tobacco was characterized using phenotypic and molecular taxonomic methods. The organism contained a cell wall murein based on l-lysine (variation A4α, type l-lysine–l-glutamic acid), synthesized long-chain cellular fatty acids of the straight-chain saturated and monounsaturated types (with C16 : 1 ω9, C16 : 0 and C18 : 1 ω9 predominating) and possessed a DNA G+C content of 46 mol%. Based on morphological, biochemical and chemical characteristics, the coccus-shaped organism did not conform to any presently recognized taxon. Comparative 16S rRNA gene sequencing studies confirmed the distinctiveness of the unknown coccus, with the bacterium displaying sequence divergence values of greater than 7 % with other recognized Gram-positive taxa. Treeing analysis reinforced its distinctiveness, with the unidentified organism forming a relatively long subline branching at the periphery of an rRNA gene sequence cluster which encompasses the genera Alloiococcus, Allofustis, Alkalibacterium, Atopostipes, Dolosigranulum and Marinilactibacillus. Based on phenotypic and molecular phylogenetic evidence, it is proposed that the unknown organism from tobacco be classified as a new genus and species, Atopococcus tabaci gen. nov., sp. nov. The type strain of Atopococcus tabaci is CCUG 48253T (=CIP 108502T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2513-2516 ◽  
Author(s):  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Shuhei Nagaoka ◽  
Masahiro Kamekura ◽  
Ron Usami

A novel halophilic archaeon, strain MH1-52-1T, was isolated from solar salt imported from Australia. Cells were pleomorphic, non-motile and Gram-negative. Strain MH1-52-1T required at least 3.0 M NaCl and 1 mM Mg2+ for growth. Strain MH1-52-1T was able to grow at pH 4.0–6.0 (optimum, pH 4.4–4.5) and 15–45 °C (optimum, 37 °C). The diether phospholipids phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, derived from both C20C20 and C20C25 archaeol, were present. Four unidentified glycolipids were also detected. The 16S rRNA gene sequence showed the highest similarity to that of Halobacterium noricense A1T (91.7 %); there were lower levels of similarity to other members of the family Halobacteriaceae. The G+C content of its DNA was 61.4 mol%. Based on our phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolate should be classified as a representative of a new genus and species, for which the name Halarchaeum acidiphilum gen. nov., sp. nov. is proposed. The type strain of Halarchaeum acidiphilum is MH1-52-1T (=JCM 16109T =DSM 22442T =CECT 7534T).


2011 ◽  
Vol 61 (1) ◽  
pp. 118-122 ◽  
Author(s):  
Chun-Mei Zhang ◽  
Xiao-Wei Huang ◽  
Wen-Zheng Pan ◽  
Jing Zhang ◽  
Kang-Bi Wei ◽  
...  

Two novel thermophilic, spore-forming bacterial strains, T-11T and E-112T, were isolated from hot springs in Tengchong and Eryuan counties of Yunnan province in south-west China. The strains were Gram-stain-positive rods, occurring singly or in chains. Growth of strain T-11T was observed between 30 and 75 °C (optimum 50 °C) and at pH 7–11 (optimum pH 8.5), while the temperature range for strain E-112T was 35–70 °C (optimum 55 °C) and the pH range was 7.0–11.0 (optimum pH 8.0). The DNA G+C contents of strains T-11T and E-112T were 41.1 and 42.6 mol%, respectively. On the basis of 16S rRNA gene sequence similarity, the two strains were shown to be related most closely to Anoxybacillus species. The chemotaxonomic characteristics [predominant isoprenoid quinone menaquinone 7 (MK-7); major fatty acids iso-C15 : 0 and iso-C17 : 0] also supported the affiliation of strains T-11T and E-112T to the genus Anoxybacillus. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains T-11T and E-112T from Anoxybacillus species with validly published names. Strains T-11T and E-112T therefore represent two novel species, for which the names Anoxybacillus tengchongensis sp. nov. (type strain T-11T =CCTCC AB209237T =KCTC 13721T) and Anoxybacillus eryuanensis sp. nov. (type strain E-112T =CCTCC AB209236T =KCTC 13720T) are proposed.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3618-3624 ◽  
Author(s):  
Svetlana N. Dedysh ◽  
Alena Didriksen ◽  
Olga V. Danilova ◽  
Svetlana E. Belova ◽  
Susanne Liebner ◽  
...  

An aerobic methanotrophic bacterium was isolated from a collapsed palsa soil in northern Norway and designated strain NE2T. Cells of this strain were Gram-stain-negative, non-motile, non-pigmented, slightly curved thick rods that multiplied by normal cell division. The cells possessed a particulate methane monooxygenase enzyme (pMMO) and utilized methane and methanol. Strain NE2T grew in a wide pH range of 4.1–8.0 (optimum pH 5.2–6.5) at temperatures between 6 and 32 °C (optimum 18–25 °C), and was capable of atmospheric nitrogen fixation under reduced oxygen tension. The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C16 : 1ω7c, and the DNA G+C content was 61.7 mol%. The isolate belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the facultative methanotroph Methylocapsa aurea KYGT (98.3 % 16S rRNA gene sequence similarity and 84 % PmoA sequence identity). However, strain NE2T differed from Methylocapsa aurea KYGT by cell morphology, the absence of pigmentation, inability to grow on acetate, broader pH growth range, and higher tolerance to NaCl. Therefore, strain NE2T represents a novel species of the genus Methylocapsa, for which we propose the name Methylocapsa palsarum sp. nov. The type strain is NE2T ( = LMG 28715T = VKM B-2945T).


Sign in / Sign up

Export Citation Format

Share Document