scholarly journals Flesh of pumpkin from ecological farming as part of fruit suitable for non-destructive cultivar classification using computer vision

Author(s):  
Ewa Ropelewska ◽  
Wioletta Popińska ◽  
Kadir Sabanci ◽  
Muhammet Fatih Aslan

AbstractThe aim of this study was to build the discriminative models for distinguishing the different cultivars of flesh of pumpkin ‘Bambino’, ‘Butternut’, ‘Uchiki Kuri’ and ‘Orange’ based on selected textures of the outer surface of images of cubes. The novelty of research involved the use of about 2000 different textures for one image. The highest total accuracy (98%) of discrimination of pumpkin ‘Bambino’, ‘Butternut’, ‘Uchiki Kuri’ and ‘Orange’ was determined for models built based on textures selected from the color space Lab and the IBk classifier and some of the individual cultivars were classified with the correctness of 100%. The total accuracy of up to 96% was observed for color space RGB and 97.5% for color space XYZ. In the case of color channels, the total accuracies reached 91% for channel b, 89.5% for channel X, 89% for channel Z.

Author(s):  
Ewa Ropelewska

AbstractThe aim of this study was to evaluate the effect of potato boiling on the correctness of cultivar discrimination. The research was performed in an objective, inexpensive and fast manner using the image analysis technique. The textures of the outer surface of slice images of raw and boiled potatoes were calculated. The discriminative models based on a set of textures selected from all color channels (R, G, B, L, a, b, X, Y, Z, U, V, S), textures selected for color spaces and textures selected for individual color channels were developed. In the case of discriminant analysis of raw potatoes of cultivars ‘Colomba’, ‘Irga’ and ‘Riviera’, the accuracies reached 94.33% for the model built based on a set of textures selected from all color channels, 94% for Lab and XYZ color spaces, 92% for color channel b and 92.33% for a set of combined textures selected from channels B, b, and Z. The processed potatoes were characterized by the accuracy of up to 98.67% for the model including the textures selected from all color channels, 98% for RGB color space, 95.33% for color channel b, 96.67% for the model combining the textures selected from channels B, b, and Z. In the case of raw and processed potatoes, the cultivar ‘Irga’ differed in 100% from other potato cultivars. The results revealed an increase in cultivar discrimination accuracy after the processing of potatoes. The textural features of the outer surface of slice images have proved useful for cultivar discrimination of raw and processed potatoes.


Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Ewa Ropelewska

The aim of this study was to evaluate the usefulness of the texture and geometric parameters of endocarp (pit) for distinguishing different cultivars of sweet cherries using image analysis. The textures from images converted to color channels and the geometric parameters of the endocarp (pits) of sweet cherry ‘Kordia’, ‘Lapins’, and ‘Büttner’s Red’ were calculated. For the set combining the selected textures from all color channels, the accuracy reached 100% when comparing ‘Kordia’ vs. ‘Lapins’ and ‘Kordia’ vs. ‘Büttner’s Red’ for all classifiers. The pits of ‘Kordia’ and ‘Lapins’, as well as ‘Kordia’ and ‘Büttner’s Red’ were also 100% correctly discriminated for discriminative models built separately for RGB, Lab and XYZ color spaces, G, L and Y color channels and for models combining selected textural and geometric features. For discrimination ‘Lapins’ and ‘Büttner’s Red’ pits, slightly lower accuracies were determined—up to 93% for models built based on textures selected from all color channels, 91% for the RGB color space, 92% for the Lab and XYZ color spaces, 84% for the G and L color channels, 83% for the Y channel, 94% for geometric features, and 96% for combined textural and geometric features.


Author(s):  
Ewa Ropelewska ◽  
Jan Piecko

AbstractThis study was aimed at developing the discriminant models for distinguishing the tomato seeds based on texture parameters of the outer surface of seeds calculated from the images (scans) converted to individual color channels R, G, B, L, a, b, X, Y, Z. The seeds of tomatoes ‘Green Zebra’, ‘Ożarowski’, ‘Pineapple’, Sacher F1 and Sandoline F1 were discriminated in pairs. The highest results were observed for models built based on sets of textures selected individually from color channels R, L and X and sets of textures selected from all color channels. In all cases, the tomato seeds ‘Green Zebra’ and ‘Ożarowski’ were discriminated with the highest average accuracy equal to 97% for the Multilayer Perceptron classifier and 96.25% for Random Forest for color channel R, 95.25% (Multilayer Perceptron) and 95% (Random Forest) for color channel L, 93% (Multilayer Perceptron) and 95% (Random Forest) for color channel X, 99.75% (Multilayer Perceptron) and 99.5% (Random Forest) for a set of textures selected from all color channels (R, G, B, L, a, b, X, Y, X). The highest average accuracies for other pairs of cultivars reached 98.25% for ‘Ożarowski’ vs. Sacher F1, 95.75% for ‘Pineapple’ vs. Sandoline F1, 97.5% for ‘Green Zebra’ vs. Sandoline F1, 97.25% for Sacher F1 vs. Sandoline F1 for models built based on textures selected from all color channels. The obtained results may be used in practice for the identification of cultivar of tomato seeds. The developed models allow to distinguish the tomato seed cultivars in an objective and fast way using digital image processing. The results confirmed the usefulness of texture parameters of the outer surface of tomato seeds for classification purposes. The discriminative models allow to obtain a very high probability and may be applied to authenticate and detect seed adulteration.


2016 ◽  
Vol 62 (1) ◽  
pp. 65-82 ◽  
Author(s):  
J. Orlowsky

Abstract A large number of infrastructural concrete buildings are protected against aggressive environments by coating systems. The functionality of these coating systems is mainly affected by the composition and thickness of the individual polymeric layers. For the first time ever, a mobile nuclear magnetic resonance (NMR) sensor allows a non-destructive determination of these important parameters on the building site. However, before this technique can be used on steel-reinforced concrete elements, the potential effect of the reinforcement on the measurement, i.e. the NMR signal, needs to be studied. The results show a shift of the NMR profile as well as an increase of the signals amplitude in the case of the reinforced samples, while calculating the thickness of concrete coating leading to identical results.


2017 ◽  
Vol 11 (4) ◽  
pp. 2142-2150 ◽  
Author(s):  
Patchimaporn Udomkun ◽  
Marcus Nagle ◽  
Dimitrios Argyropoulos ◽  
Alexander Nimo Wiredu ◽  
Busarakorn Mahayothee ◽  
...  

2018 ◽  
Vol 61 (5) ◽  
pp. 1497-1504
Author(s):  
Zhenjie Wang ◽  
Ke Sun ◽  
Lihui Du ◽  
Jian Yuan ◽  
Kang Tu ◽  
...  

Abstract. In this study, computer vision was used for the identification and classification of fungi on moldy paddy. To develop a rapid and efficient method for the classification of common fungal species found in stored paddy, computer vision was used to acquire images of individual colonies of growing fungi for three consecutive days. After image processing, the color, shape, and texture features were acquired and used in a subsequent discriminant analysis. Both linear (i.e., linear discriminant analysis and partial least squares discriminant analysis) and nonlinear (i.e., random forest and support vector machine [SVM]) pattern recognition models were employed for the classification of fungal colonies, and the results were compared. The results indicate that when using all of the features for three consecutive days, the performance of the nonlinear tools was superior to that of the linear tools, especially in the case of the SVM models, which achieved an accuracy of 100% on the calibration sets and an accuracy of 93.2% to 97.6% on the prediction sets. After sequential selection of projection algorithm, ten common features were selected for building the classification models. The results showed that the SVM model achieved an overall accuracy of 95.6%, 98.3%, and 99.0% on the prediction sets on days 2, 3, and 4, respectively. This work demonstrated that computer vision with several features is suitable for the identification and classification of fungi on moldy paddy based on the form of the individual colonies at an early growth stage during paddy storage. Keywords: Classification, Computer vision, Fungal colony, Feature selection, SVM.


2021 ◽  
Vol 905 (1) ◽  
pp. 012059
Author(s):  
Y Hendrawan ◽  
B Rohmatulloh ◽  
F I Ilmi ◽  
M R Fauzy ◽  
R Damayanti ◽  
...  

Abstract Various types of Indonesian coffee are already popular internationally. Recently, there are still not many methods to classify the types of typical Indonesian coffee. Computer vision is a non-destructive method for classifying agricultural products. This study aimed to classify three types of Indonesian Arabica coffee beans, i.e., Gayo Aceh, Kintamani Bali, and Toraja Tongkonan, using computer vision. The classification method used was the AlexNet convolutional neural network with sensitivity analysis using several variations of the optimizer such as SGDm, Adam, and RMSProp and the learning rate of 0.00005 and 0.0001. Each type of coffee used 500 data for training and validation with the distribution of 70% training and 30% validation. The results showed that all AlexNet models achieved a perfect validation accuracy value of 100% in 1,040 iterations. This study also used 100 testing-set data on each type of coffee bean. In the testing confusion matrix, the accuracy reached 99.6%.


Author(s):  
Kamal Naina Soni

Abstract: Human expressions play an important role in the extraction of an individual's emotional state. It helps in determining the current state and mood of an individual, extracting and understanding the emotion that an individual has based on various features of the face such as eyes, cheeks, forehead, or even through the curve of the smile. A survey confirmed that people use Music as a form of expression. They often relate to a particular piece of music according to their emotions. Considering these aspects of how music impacts a part of the human brain and body, our project will deal with extracting the user’s facial expressions and features to determine the current mood of the user. Once the emotion is detected, a playlist of songs suitable to the mood of the user will be presented to the user. This can be a big help to alleviate the mood or simply calm the individual and can also get quicker song according to the mood, saving time from looking up different songs and parallel developing a software that can be used anywhere with the help of providing the functionality of playing music according to the emotion detected. Keywords: Music, Emotion recognition, Categorization, Recommendations, Computer vision, Camera


2019 ◽  
Vol 156 ◽  
pp. 558-564 ◽  
Author(s):  
Dario Pietro Cavallo ◽  
Maria Cefola ◽  
Bernardo Pace ◽  
Antonio Francesco Logrieco ◽  
Giovanni Attolico

Sign in / Sign up

Export Citation Format

Share Document