scholarly journals Effect of boiling on classification performance of potatoes determined by computer vision

Author(s):  
Ewa Ropelewska

AbstractThe aim of this study was to evaluate the effect of potato boiling on the correctness of cultivar discrimination. The research was performed in an objective, inexpensive and fast manner using the image analysis technique. The textures of the outer surface of slice images of raw and boiled potatoes were calculated. The discriminative models based on a set of textures selected from all color channels (R, G, B, L, a, b, X, Y, Z, U, V, S), textures selected for color spaces and textures selected for individual color channels were developed. In the case of discriminant analysis of raw potatoes of cultivars ‘Colomba’, ‘Irga’ and ‘Riviera’, the accuracies reached 94.33% for the model built based on a set of textures selected from all color channels, 94% for Lab and XYZ color spaces, 92% for color channel b and 92.33% for a set of combined textures selected from channels B, b, and Z. The processed potatoes were characterized by the accuracy of up to 98.67% for the model including the textures selected from all color channels, 98% for RGB color space, 95.33% for color channel b, 96.67% for the model combining the textures selected from channels B, b, and Z. In the case of raw and processed potatoes, the cultivar ‘Irga’ differed in 100% from other potato cultivars. The results revealed an increase in cultivar discrimination accuracy after the processing of potatoes. The textural features of the outer surface of slice images have proved useful for cultivar discrimination of raw and processed potatoes.

Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Ewa Ropelewska

The aim of this study was to evaluate the usefulness of the texture and geometric parameters of endocarp (pit) for distinguishing different cultivars of sweet cherries using image analysis. The textures from images converted to color channels and the geometric parameters of the endocarp (pits) of sweet cherry ‘Kordia’, ‘Lapins’, and ‘Büttner’s Red’ were calculated. For the set combining the selected textures from all color channels, the accuracy reached 100% when comparing ‘Kordia’ vs. ‘Lapins’ and ‘Kordia’ vs. ‘Büttner’s Red’ for all classifiers. The pits of ‘Kordia’ and ‘Lapins’, as well as ‘Kordia’ and ‘Büttner’s Red’ were also 100% correctly discriminated for discriminative models built separately for RGB, Lab and XYZ color spaces, G, L and Y color channels and for models combining selected textural and geometric features. For discrimination ‘Lapins’ and ‘Büttner’s Red’ pits, slightly lower accuracies were determined—up to 93% for models built based on textures selected from all color channels, 91% for the RGB color space, 92% for the Lab and XYZ color spaces, 84% for the G and L color channels, 83% for the Y channel, 94% for geometric features, and 96% for combined textural and geometric features.


Author(s):  
Ewa Ropelewska ◽  
Wioletta Popińska ◽  
Kadir Sabanci ◽  
Muhammet Fatih Aslan

AbstractThe aim of this study was to build the discriminative models for distinguishing the different cultivars of flesh of pumpkin ‘Bambino’, ‘Butternut’, ‘Uchiki Kuri’ and ‘Orange’ based on selected textures of the outer surface of images of cubes. The novelty of research involved the use of about 2000 different textures for one image. The highest total accuracy (98%) of discrimination of pumpkin ‘Bambino’, ‘Butternut’, ‘Uchiki Kuri’ and ‘Orange’ was determined for models built based on textures selected from the color space Lab and the IBk classifier and some of the individual cultivars were classified with the correctness of 100%. The total accuracy of up to 96% was observed for color space RGB and 97.5% for color space XYZ. In the case of color channels, the total accuracies reached 91% for channel b, 89.5% for channel X, 89% for channel Z.


Author(s):  
Ewa Ropelewska ◽  
Krzysztof P. Rutkowski

AbstractThe peaches belonging to different cultivars can be characterized by differentiation in properties. The aim of this study was to evaluate the usefulness of individual parts of fruit (skin, flesh, stone and seed) for cultivar discrimination of peaches based on textures determined using image analysis. Discriminant analysis was performed using the classifiers of Bayes net, logistic, SMO, multi-class classifier and random forest based on a set of combined textures selected from all color channels R, G, B, L, a, b, X, Y, Z and for textures selected separately for RGB, Lab and XYZ color spaces. In the case of sets of textures selected from all color channels (R, G, B, L, a, b, X, Y, Z), the accuracy of 100% was observed for flesh, stones and seeds for selected classifiers. The sets of textures selected from RGB color space produced the correctness equal to 100% in the case of flesh and seeds of peaches. In the case of Lab and XYZ color spaces, slightly lower accuracies than for RGB color space were obtained and the accuracy reaching 100% was noted only for the discrimination of seeds of peaches. The research proved the usefulness of selected texture parameters of fruit flesh, stones and seeds for successful discrimination of peach cultivars with an accuracy of 100%. The distinguishing between cultivars may be important for breeders, consumers and the peach industry for ensuring adequate processing conditions and equipment parameters. The cultivar identification of fruit by human may be characterized by large errors. The molecular or chemical methods may require special equipment or be time-consuming. The image analysis may ensure objective, rapid and relatively inexpensive procedure and high accuracy for peach cultivar discrimination.


Author(s):  
Ewa Ropelewska ◽  
Jan Piecko

AbstractThis study was aimed at developing the discriminant models for distinguishing the tomato seeds based on texture parameters of the outer surface of seeds calculated from the images (scans) converted to individual color channels R, G, B, L, a, b, X, Y, Z. The seeds of tomatoes ‘Green Zebra’, ‘Ożarowski’, ‘Pineapple’, Sacher F1 and Sandoline F1 were discriminated in pairs. The highest results were observed for models built based on sets of textures selected individually from color channels R, L and X and sets of textures selected from all color channels. In all cases, the tomato seeds ‘Green Zebra’ and ‘Ożarowski’ were discriminated with the highest average accuracy equal to 97% for the Multilayer Perceptron classifier and 96.25% for Random Forest for color channel R, 95.25% (Multilayer Perceptron) and 95% (Random Forest) for color channel L, 93% (Multilayer Perceptron) and 95% (Random Forest) for color channel X, 99.75% (Multilayer Perceptron) and 99.5% (Random Forest) for a set of textures selected from all color channels (R, G, B, L, a, b, X, Y, X). The highest average accuracies for other pairs of cultivars reached 98.25% for ‘Ożarowski’ vs. Sacher F1, 95.75% for ‘Pineapple’ vs. Sandoline F1, 97.5% for ‘Green Zebra’ vs. Sandoline F1, 97.25% for Sacher F1 vs. Sandoline F1 for models built based on textures selected from all color channels. The obtained results may be used in practice for the identification of cultivar of tomato seeds. The developed models allow to distinguish the tomato seed cultivars in an objective and fast way using digital image processing. The results confirmed the usefulness of texture parameters of the outer surface of tomato seeds for classification purposes. The discriminative models allow to obtain a very high probability and may be applied to authenticate and detect seed adulteration.


Author(s):  
Felicia Anisoara Damian ◽  
Simona Moldovanu ◽  
Luminita Moraru

This study aims to investigate the ability of an artificial neural network to differentiate between malign and benign skin lesions based on two statistics terms and for RGB (R red, G green, B blue) and YIQ (Y luminance, and I and Q chromatic differences) color spaces. The targeted statistics texture features are skewness (S) and kurtosis (K) which are extracted from the histograms of each color channel corresponding to the color spaces and for the two classes of lesions: nevi and melanomas. The extracted data is used to train the Feed-Forward Back Propagation Networks (FFBPNs). The number of neurons in the hidden layer varies: it can be 8, 16, 24, or 32. The results indicate skewness features computed for the red channel in the RGB color space as the best choice to reach the goal of our study. The reported result shows the advantages of monochrome channels representation for skin lesions diagnosis.


2020 ◽  
Vol 1 ◽  
pp. 34-47
Author(s):  
Hennadii Khudov ◽  
Igor Ruban ◽  
Oleksandr Makoveichuk ◽  
Hennady Pevtsov ◽  
Vladyslav Khudov ◽  
...  

A method for determining the contours of objects on complexly structured color images based on the ant colony optimization algorithm is proposed. The method for determining the contours of objects of interest in complexly structured color images based on the ant colony optimization algorithm, unlike the known ones, provides for the following. Color channels are highlighted. In each color channel, a brightness channel is allocated. The contours of objects of interest are determined by the method based on the ant colony optimization algorithm. At the end, the transition back to the original color model (the combination of color channels) is carried out. A typical complex structured color image is processed to determine the contours of objects using the ant colony optimization algorithm. The image is presented in the RGB color space. It is established that objects of interest can be determined on the resulting image. At the same time, the presence of a large number of "garbage" objects on the resulting image is noted. This is a disadvantage of the developed method. A visual comparison of the application of the developed method and the known methods for determining the contours of objects is carried out. It is established that the developed method improves the accuracy of determining the contours of objects. Errors of the first and second kind are chosen as quantitative indicators of the accuracy of determining the contours of objects in a typical complex structured color image. Errors of the first and second kind are determined by the criterion of maximum likelihood, which follows from the generalized criterion of minimum average risk. The errors of the first and second kind are estimated when determining the contours of objects in a typical complex structured color image using known methods and the developed method. The well-known methods are the Canny, k-means (k=2), k-means (k=3), Random forest methods. It is established that when using the developed method based on the ant colony optimization algorithm, the errors in determining the contours of objects are reduced on average by 5–13 %.


2019 ◽  
Vol 2019 (1) ◽  
pp. 153-158
Author(s):  
Lindsay MacDonald

We investigated how well a multilayer neural network could implement the mapping between two trichromatic color spaces, specifically from camera R,G,B to tristimulus X,Y,Z. For training the network, a set of 800,000 synthetic reflectance spectra was generated. For testing the network, a set of 8,714 real reflectance spectra was collated from instrumental measurements on textiles, paints and natural materials. Various network architectures were tested, with both linear and sigmoidal activations. Results show that over 85% of all test samples had color errors of less than 1.0 ΔE2000 units, much more accurate than could be achieved by regression.


2021 ◽  
Vol 13 (5) ◽  
pp. 939
Author(s):  
Yongan Xue ◽  
Jinling Zhao ◽  
Mingmei Zhang

To accurately extract cultivated land boundaries based on high-resolution remote sensing imagery, an improved watershed segmentation algorithm was proposed herein based on a combination of pre- and post-improvement procedures. Image contrast enhancement was used as the pre-improvement, while the color distance of the Commission Internationale de l´Eclairage (CIE) color space, including the Lab and Luv, was used as the regional similarity measure for region merging as the post-improvement. Furthermore, the area relative error criterion (δA), the pixel quantity error criterion (δP), and the consistency criterion (Khat) were used for evaluating the image segmentation accuracy. The region merging in Red–Green–Blue (RGB) color space was selected to compare the proposed algorithm by extracting cultivated land boundaries. The validation experiments were performed using a subset of Chinese Gaofen-2 (GF-2) remote sensing image with a coverage area of 0.12 km2. The results showed the following: (1) The contrast-enhanced image exhibited an obvious gain in terms of improving the image segmentation effect and time efficiency using the improved algorithm. The time efficiency increased by 10.31%, 60.00%, and 40.28%, respectively, in the RGB, Lab, and Luv color spaces. (2) The optimal segmentation and merging scale parameters in the RGB, Lab, and Luv color spaces were C for minimum areas of 2000, 1900, and 2000, and D for a color difference of 1000, 40, and 40. (3) The algorithm improved the time efficiency of cultivated land boundary extraction in the Lab and Luv color spaces by 35.16% and 29.58%, respectively, compared to the RGB color space. The extraction accuracy was compared to the RGB color space using the δA, δP, and Khat, that were improved by 76.92%, 62.01%, and 16.83%, respectively, in the Lab color space, while they were 55.79%, 49.67%, and 13.42% in the Luv color space. (4) Through the visual comparison, time efficiency, and segmentation accuracy, the comprehensive extraction effect using the proposed algorithm was obviously better than that of RGB color-based space algorithm. The established accuracy evaluation indicators were also proven to be consistent with the visual evaluation. (5) The proposed method has a satisfying transferability by a wider test area with a coverage area of 1 km2. In addition, the proposed method, based on the image contrast enhancement, was to perform the region merging in the CIE color space according to the simulated immersion watershed segmentation results. It is a useful attempt for the watershed segmentation algorithm to extract cultivated land boundaries, which provides a reference for enhancing the watershed algorithm.


Author(s):  
Sriparna Banerjee ◽  
Pritam Kumar Ghosh ◽  
Pranay Kumar Singha ◽  
Swati Chowdhuri ◽  
Sheli Sinha Chaudhuri

2021 ◽  
Vol 2021 (3) ◽  
pp. 108-1-108-14
Author(s):  
Eberhard Hasche ◽  
Oliver Karaschewski ◽  
Reiner Creutzburg

In modern moving image production pipelines, it is unavoidable to move the footage through different color spaces. Unfortunately, these color spaces exhibit color gamuts of various sizes. The most common problem is converting the cameras’ widegamut color spaces to the smaller gamuts of the display devices (cinema projector, broadcast monitor, computer display). So it is necessary to scale down the scene-referred footage to the gamut of the display using tone mapping functions [34].In a cinema production pipeline, ACES is widely used as the predominant color system. The all-color compassing ACES AP0 primaries are defined inside the system in a general way. However, when implementing visual effects and performing a color grade, the more usable ACES AP1 primaries are in use. When recording highly saturated bright colors, color values are often outside the target color space. This results in negative color values, which are hard to address inside a color pipeline. "Users of ACES are experiencing problems with clipping of colors and the resulting artifacts (loss of texture, intensification of color fringes). This clipping occurs at two stages in the pipeline: <list list-type="simple"> <list-item>- Conversion from camera raw RGB or from the manufacturer’s encoding space into ACES AP0</list-item> <list-item>- Conversion from ACES AP0 into the working color space ACES AP1" [1]</list-item> </list>The ACES community established a Gamut Mapping Virtual Working Group (VWG) to address these problems. The group’s scope is to propose a suitable gamut mapping/compression algorithm. This algorithm should perform well with wide-gamut, high dynamic range, scene-referred content. Furthermore, it should also be robust and invertible. This paper tests the behavior of the published GamutCompressor when applied to in- and out-ofgamut imagery and provides suggestions for application implementation. The tests are executed in The Foundry’s Nuke [2].


Sign in / Sign up

Export Citation Format

Share Document