scholarly journals How shearwaters prey. New insights in foraging behaviour and marine foraging associations using bird-borne video cameras

2021 ◽  
Vol 169 (1) ◽  
Author(s):  
Lucie Michel ◽  
Marco Cianchetti-Benedetti ◽  
Carlo Catoni ◽  
Giacomo Dell’Omo

Abstract Conventional bio-logging techniques used for ethological studies of seabirds have their limitations when studying detailed behaviours at sea. This study uses animal-borne video cameras to reveal fine-scale behaviours, associations with conspecifics and other species and interactions with fishery vessels during foraging of a Mediterranean seabird. The study was conducted on Scopoli's shearwaters (Calonectris diomedea) breeding in Linosa island (35°51′33″ N; 12°51′34″ E) during summer 2020. Foraging events were video recorded from a seabirds' view with lightweight cameras attached to the birds' back. Foraging always occurred in association with other shearwaters. Competitive events between shearwaters were observed, and their frequency was positively correlated to the number of birds in the foraging aggregation. Associations with tunas and sea turtles have been frequent observations at natural foraging sites. During foraging events, video recordings allowed observations of fine-scale behaviours, which would have remained unnoticed with conventional tracking devices. Foraging events could be categorised by prey type into “natural prey” and “fishery discards”. Analysis of the video footage suggests behavioural differences between the two prey type categories. Those differences suggest that the foraging effort between natural prey and fishery discards consumption can vary, which adds new arguments to the discussion about energy trade-offs and choice of foraging strategy. These observations highlight the importance of combining tracking technologies to obtain a complete picture of the at-sea behaviours of seabirds, which is essential for understanding the impact of foraging strategies and seabird-fishery interactions. Graphical abstract

2020 ◽  
Vol 101 (2) ◽  
pp. 544-557
Author(s):  
Kristin Denryter ◽  
Rachel C Cook ◽  
John G Cook ◽  
Katherine L Parker ◽  
Michael P Gillingham

Abstract Foraging by animals is hypothesized to be state-dependent, that is, varying with physiological condition of individuals. State often is defined by energy reserves, but state also can reflect differences in nutritional requirements (e.g., for reproduction, lactation, growth, etc.). Testing hypotheses about state-dependent foraging in ungulates is difficult because fine-scale data needed to evaluate these hypotheses generally are lacking. To evaluate whether foraging by caribou (Rangifer tarandus) was state-dependent, we compared bite and intake rates, travel rates, dietary quality, forage selection, daily foraging time, and foraging strategies of caribou with three levels of nutritional requirements (lactating adults, nonlactating adults, subadults 1–2 years old). Only daily foraging times and daily nutrient intakes differed among nutritional classes of caribou. Lactating caribou foraged longer per day than nonlactating caribou—a difference that was greatest at the highest rates of intake, but which persisted even when intake was below requirements. Further, at sites where caribou achieved high rates of intake, caribou in each nutritional class continued foraging even after satisfying daily nutritional requirements, which was consistent with a foraging strategy to maximize energy intake. Foraging time by caribou was partially state-dependent, highlighting the importance of accounting for physiological state in studies of animal behavior. Fine-scale foraging behaviors may influence larger-scale behavioral strategies, with potential implications for conservation and management.


2020 ◽  
Vol 12 (3) ◽  
pp. 528 ◽  
Author(s):  
Jingye Li ◽  
Jian Gong ◽  
Jean-Michel Guldmann ◽  
Shicheng Li ◽  
Jie Zhu

Land use/cover change (LUCC) has an important impact on the terrestrial carbon cycle. The spatial distribution of regional carbon reserves can provide the scientific basis for the management of ecosystem carbon storage and the formulation of ecological and environmental policies. This paper proposes a method combining the CA-based FLUS model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to assess the temporal and spatial changes in ecosystem carbon storage due to land-use changes over 1990–2015 in the Qinghai Lake Basin (QLB). Furthermore, future ecosystem carbon storage is simulated and evaluated over 2020–2030 under three scenarios of natural growth (NG), cropland protection (CP), and ecological protection (EP). The long-term spatial variations in carbon storage in the QLB are discussed. The results show that: (1) Carbon storage in the QLB decreased at first (1990–2000) and increased later (2000–2010), with total carbon storage increasing by 1.60 Tg C (Teragram: a unit of mass equal to 1012 g). From 2010 to 2015, carbon storage displayed a downward trend, with a sharp decrease in wetlands and croplands as the main cause; (2) Under the NG scenario, carbon reserves decrease by 0.69 Tg C over 2020–2030. These reserves increase significantly by 6.77 Tg C and 7.54 Tg C under the CP and EP scenarios, respectively, thus promoting the benign development of the regional ecological environment. This study improves our understanding on the impact of land-use change on carbon storage for the QLB in the northeastern Qinghai–Tibetan Plateau (QTP).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Katy Tobin ◽  
Sinead Maguire ◽  
Bernie Corr ◽  
Charles Normand ◽  
Orla Hardiman ◽  
...  

Abstract Background Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative condition with a mean life expectancy of 3 years from first symptom. Understanding the factors that are important to both patients and their caregivers has the potential to enhance service delivery and engagement, and improve efficiency. The Discrete Choice Experiment (DCE) is a stated preferences method which asks service users to make trade-offs for various attributes of health services. This method is used to quantify preferences and shows the relative importance of the attributes in the experiment, to the service user. Methods A DCE with nine choice sets was developed to measure the preferences for health services of ALS patients and their caregivers and the relative importance of various aspects of care, such as timing of care, availability of services, and decision making. The DCE was presented to patients with ALS, and their caregivers, recruited from a national multidisciplinary clinic. A random effects probit model was applied to estimate the impact of each attribute on a participant’s choice. Results Patients demonstrated the strongest preferences about timing of receiving information about ALS. A strong preference was also placed on seeing the hospice care team later rather than early on in the illness. Patients also indicated their willingness to consider the use of communication devices. Grouping by stage of disease, patients who were in earlier stages of disease showed a strong preference for receipt of extensive information about ALS at the time of diagnosis. Caregivers showed a strong preference for engagement with healthcare professionals, an attribute that was not prioritised by patients. Conclusions The DCE method can be useful in uncovering priorities of patients and caregivers with ALS. Patients and caregivers have different priorities relating to health services and the provision of care in ALS, and patient preferences differ based on the stage and duration of their illness. Multidisciplinary teams must calibrate the delivery of care in the context of the differing expectations, needs and priorities of the patient/caregiver dyad.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 323
Author(s):  
Guilherme Pontes Luz ◽  
Rodrigo Amaro e Silva

The recently approved regulation on Energy Communities in Europe is paving the way for new collective forms of energy consumption and production, mainly based on photovoltaics. However, energy modeling approaches that can adequately evaluate the impact of these new regulations on energy community configurations are still lacking, particularly with regards to the grid tariffs imposed on collective systems. Thus, the present work models three different energy community configurations sustained on collective photovoltaics self-consumption for a small city in southern Portugal. This energy community, which integrates the city consumers and a local winery, was modeled using the Python-based Calliope framework. Using real electricity demand data from power transformers and an actual winery, the techno-economic feasibility of each configuration was assessed. Results show that all collective arrangements can promote a higher penetration of photovoltaic capacity (up to 23%) and a modest reduction in the overall cost of electricity (up to 8%). However, there are clear trade-offs between the different pathways: more centralized configurations have 53% lower installation costs but are more sensitive to grid use costs (which can represent up to 74% of the total system costs). Moreover, key actor’s individual self-consumption rate may decrease by 10% in order to benefit the energy community as a whole.


Author(s):  
Poppy M. Jeffries ◽  
Samantha C. Patrick ◽  
Jonathan R. Potts

AbstractMany animal populations include a diversity of personalities, and these personalities are often linked to foraging strategy. However, it is not always clear why populations should evolve to have this diversity. Indeed, optimal foraging theory typically seeks out a single optimal strategy for individuals in a population. So why do we, in fact, see a variety of strategies existing in a single population? Here, we aim to provide insight into this conundrum by modelling the particular case of foraging seabirds, that forage on patchy prey. These seabirds have only partial knowledge of their environment: they do not know exactly where the next patch will emerge, but they may have some understanding of which locations are more likely to lead to patch emergence than others. Many existing optimal foraging studies assume either complete knowledge (e.g. Marginal Value Theorem) or no knowledge (e.g. Lévy Flight Hypothesis), but here we construct a new modelling approach which incorporates partial knowledge. In our model, different foraging strategies are favoured by different birds along the bold-shy personality continuum, so we can assess the optimality of a personality type. We show that it is optimal to be shy (resp. bold) when living in a population of bold (resp. shy) birds. This observation gives a plausible mechanism behind the emergence of diverse personalities. We also show that environmental degradation is likely to favour shyer birds and cause a decrease in diversity of personality over time.


2021 ◽  
pp. 108602662199006
Author(s):  
Peter Tashman ◽  
Svetlana Flankova ◽  
Marc van Essen ◽  
Valentina Marano

We meta-analyze research on why firms join voluntary environmental programs (VEPs) to assess the impact of program stringency, or the extent to which they have rigorous, enforceable standards on these decisions. Stringency creates trade-offs for firms by affecting programs’ effectiveness, legitimacy, and adoption costs. Most research considers singular programs and lacks cross program variation needed to analyze program stringency’s impact. Our meta-analysis addresses this by sampling 127 studies and 23 VEPs. We begin by identifying common institutional and resource-based drivers of participation in the literature, and then analyze how program stringency moderates their impacts. Our results suggest that strictly governed VEPs encourage participation among highly visible and profitable firms, and discourage it when informal institutional pressures are higher, and firms have prior experience with other VEPs or quality management standards. We demonstrate that VEP stringency has nuanced effects on firm participation based on the institutional and resource-based factors facing them.


2013 ◽  
Vol 53 (8) ◽  
pp. 796 ◽  
Author(s):  
Karl Behrendt ◽  
Oscar Cacho ◽  
James M. Scott ◽  
Randall Jones

This study addresses the problem of balancing the trade-offs between the need for animal production, profit, and the goal of achieving persistence of desirable species within grazing systems. The bioeconomic framework applied in this study takes into account the impact of climate risk and the management of pastures and grazing rules on the botanical composition of the pasture resource, a factor that impacts on livestock production and economic returns over time. The framework establishes the links between inputs, the state of the pasture resource and outputs, to identify optimal pasture development strategies. The analysis is based on the application of a dynamic pasture resource development simulation model within a seasonal stochastic dynamic programming framework. This enables the derivation of optimum decisions within complex grazing enterprises, over both short-term tactical (such as grazing rest) and long-term strategic (such as pasture renovation) time frames and under climatic uncertainty. The simulation model is parameterised using data and systems from the Cicerone Project farmlet experiment. Results indicate that the strategic decision of pasture renovation should only be considered when pastures are in a severely degraded state, whereas the tactical use of grazing rest or low stocking rates should be considered as the most profitable means of maintaining adequate proportions of desirable species within a pasture sward. The optimal stocking rates identified reflected a pattern which may best be described as a seasonal saving and consumption cycle. The optimal tactical and strategic decisions at different pasture states, based on biomass and species composition, varies both between seasons and in response to the imposed soil fertility regime. Implications of these findings at the whole-farm level are discussed in the context of the Cicerone Project farmlets.


Author(s):  
Poovadol Sirirangsi ◽  
Adjo Amekudzi ◽  
Pannapa Herabat

The replacement-cost approach and the book-value method as decision support tools for selecting maintenance alternatives under budget constraints and for capturing the effects of maintenance practices on highway asset value are investigated. By using a case study based on the Thailand Pavement Management System, the replacement-cost approach and the book-value method are applied to analyze maintenance alternatives for selected highways. The versatility of these asset-valuation methods is explored for capturing trade-offs in the type and timing of maintenance and for incorporating the added value of effective maintenance practices and the impact of deferred maintenance in the overall asset value. The study demonstrated that the replacement-cost approach is a more versatile tool for considering the maintenance-related value of highways in maintenance decision making, whereas the book value may be a simpler financial accounting tool. The two approaches may be used together to clarify how maintenance expenditures are being translated into facility replacement value or how the overall value of the infrastructure is being preserved. The study results are potentially useful to agencies interested in capturing the added value of effective maintenance practices in the overall value of their asset base.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Monique Ladds ◽  
David Rosen ◽  
Carling Gerlinsky ◽  
David Slip ◽  
Robert Harcourt

Abstract Physiology places constraints on an animal’s ability to forage and those unable to adapt to changing conditions may face increased challenges to reproduce and survive. As the global marine environment continues to change, small, air-breathing, endothermic marine predators such as otariids (fur seals and sea lions) and particularly females, who are constrained by central place foraging during breeding, may experience increased difficulties in successfully obtaining adequate food resources. We explored whether physiological limits of female otariids may be innately related to body morphology (fur seals vs sea lions) and/or dictate foraging strategies (epipelagic vs mesopelagic or benthic). We conducted a systematic review of the increased body of literature since the original reviews of Costa et al. (When does physiology limit the foraging behaviour of freely diving mammals? Int Congr Ser 2004;1275:359–366) and Arnould and Costa (Sea lions in drag, fur seals incognito: insights from the otariid deviants. In Sea Lions of the World Fairbanks. Alaska Sea Grant College Program, Alaska, USA, pp. 309–324, 2006) on behavioural (dive duration and depth) and physiological (total body oxygen stores and diving metabolic rates) parameters. We estimated calculated aerobic dive limit (cADL—estimated duration of aerobic dives) for species and used simulations to predict the proportion of dives that exceeded the cADL. We tested whether body morphology or foraging strategy was the primary predictor of these behavioural and physiological characteristics. We found that the foraging strategy compared to morphology was a better predictor of most parameters, including whether a species was more likely to exceed their cADL during a dive and the ratio of dive time to cADL. This suggests that benthic and mesopelagic divers are more likely to be foraging at their physiological capacity. For species operating near their physiological capacity (regularly exceeding their cADL), the ability to switch strategies is limited as the cost of foraging deeper and longer is disproportionally high, unless it is accompanied by physiological adaptations. It is proposed that some otariids may not have the ability to switch foraging strategies and so be unable adapt to a changing oceanic ecosystem.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2190 ◽  
Author(s):  
Rafael Dawid ◽  
David McMillan ◽  
Matthew Revie

This paper for the first time captures the impact of uncertain maintenance action times on vessel routing for realistic offshore wind farm problems. A novel methodology is presented to incorporate uncertainties, e.g., on the expected maintenance duration, into the decision-making process. Users specify the extent to which these unknown elements impact the suggested vessel routing strategy. If uncertainties are present, the tool outputs multiple vessel routing policies with varying likelihoods of success. To demonstrate the tool’s capabilities, two case studies were presented. Firstly, simulations based on synthetic data illustrate that in a scenario with uncertainties, the cost-optimal solution is not necessarily the best choice for operators. Including uncertainties when calculating the vessel routing policy led to a 14% increase in the number of wind turbines maintained at the end of the day. Secondly, the tool was applied to a real-life scenario based on an offshore wind farm in collaboration with a United Kingdom (UK) operator. The results showed that the assignment of vessels to turbines generated by the tool matched the policy chosen by wind farm operators. By producing a range of policies for consideration, this tool provided operators with a structured and transparent method to assess trade-offs and justify decisions.


Sign in / Sign up

Export Citation Format

Share Document