Estimate of total heat transfer in two- and three-dimensional solid bodies utilizing the product of mean temperatures for the intersecting one-dimensional solid bodies

2017 ◽  
Vol 53 (12) ◽  
pp. 3565-3570 ◽  
Author(s):  
Antonio Campo
2017 ◽  
Vol 45 (3) ◽  
pp. 245-259
Author(s):  
Antonio Campo ◽  
Jane Y Chang

In the analysis of unidirectional, unsteady heat conduction for simple solid bodies (large slab, long cylinder and sphere), the modern tendency adopted by authors of heat transfer textbooks is to calculate the temperatures and total heat transfer with “one-term” series accounting for the proper eigenquantities, which are expressed in terms of the Biot number. The supporting information is available in tables for a large slab, a long cylinder and a sphere. To avoid linear and quadratic interpolation for the Biot numbers listed in the tables, the goal of the present study is to use regression analysis in order to develop compact correlation equations for the first eigenvalues, the first eigencontants and the first constants (for the total heat transfer) varying with the Biot number for large slabs, long cylinders and spheres, all in the ample range 0 <  Bi ≤ 100. This direct approach will speed up the step-by-step calculations of a multitude of unsteady heat conduction problems for engineering students.


1980 ◽  
Vol 102 (2) ◽  
pp. 303-307 ◽  
Author(s):  
W. W. Yuen ◽  
L. W. Wong

Heat transfer by simultaneous conduction and radiation in an absorbing, emitting and anisotropically-scattering material is investigated theoretically. Consideration is given to a one-dimensional system bounded by two parallel gray, diffuse and isothermal walls. Assuming a physical model of linear-anisotropic scattering, the resulting integral-differential equation is solved by a successive approximation technique similar to the method of undetermined parameters. The solution method is demonstrated to be relatively simple and yields solution converging qucikly to the exact results. Results show that for the present one-dimensional system, the common approach of treating the total heat transfer as a simple addition of separate independent contributions from conduction and radiation is quite inaccurate for certain cases. This approach is thus ineffective in illustrating the general effect of scattering. Both the scattering albedo and the forward-backward scattering parameters are shown to have some interesting effects on the total heat transfer and the medium’s temperature. The magnitude of these effects depends on the surface emissivity of the two boundaries.


2003 ◽  
Vol 2 (2) ◽  
Author(s):  
R. S. Matos ◽  
T. A. Laursen ◽  
J. V. C. Vargas ◽  
A. Bejan

This work presents a three-dimensional (3-D) numerical and experimental geometric optimization study to maximize the total heat transfer rate between a bundle of finned tubes in a given volume and a given external flow both for circular and elliptic arrangements, for general staggered configurations. The optimization procedure started by recognizing the design limited space availability as a fixed volume constraint. The experimental results were obtained for circular and elliptic configurations with a fixed number of tubes (12), starting with an equilateral triangle configuration, which fitted uniformly into the fixed volume with a resulting maximum dimensionless tube-to-tube spacing S/2b = 1.5, where S is the actual spacing and b is the smaller ellipse semi-axis. Several experimental configurations were built by reducing the tube-to-tube spacings, identifying the optimal spacing for maximum heat transfer. Similarly, it was possible to investigate the existence of optima with respect to other two geometric degrees of freedom, i.e., tube eccentricity and fin-to-fin spacing. The results are reported for air as the external fluid in the laminar regime, for 125 and 100 Re 2b , where 2b is the ellipses smaller axis length. Circular and elliptic arrangements with the same flow obstruction cross-sectional area were compared on the basis of maximum total heat transfer. This criterion allows one to quantify the heat transfer gain in the most isolated way possible, by studying arrangements with equivalent total pressure drops independently of the tube cross section shape. This paper reports three-dimensional (3- D) numerical optimization results for finned circular and elliptic tubes arrangements, which are validated by direct comparison with experimental measurements with good agreement. Global optima with respect to tube-to-tube spacing, eccentricity and fin-tofin spacing ( 0.5 e 0.5, S/2b and 06 . 0 f for 125 and 100 Re 2b , respectively) were found and reported in general dimensionless variables. A relative heat transfer gain of up to 19% is observed in the optimal elliptic arrangement, as compared to the optimal circular one. The heat transfer gain, combined with the relative material mass reduction of up to 32% observed in the optimal elliptic arrangement in comparison to the circular one, show the elliptical arrangement has the potential for a considerably better overall performance and lower cost than the traditional circular geometry.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 200
Author(s):  
Lingyun Zhang ◽  
Yupeng Hu ◽  
Minghai Li

This study examines the combined heat transfer by thermal conduction, natural convection and surface radiation in the porous char layer that is formed from the intumescent coating under fire. The results show that some factors, such as the Rayleigh number, conductivity ratio, emissivity, radiation–conduction number, void fraction and heating mode have a certain effect on the total heat transfer. In addition, the natural convection of the air in the cavity always inhibits surface radiation among the solid walls and thermal conduction, and the character of the total heat transfer is the competition result of the three heat transfer mechanisms.


2003 ◽  
Vol 2 (2) ◽  
pp. 65 ◽  
Author(s):  
R. S. Matos ◽  
T. A. Laursen ◽  
J. V. C. Vargas ◽  
A. Bejan

This work presents a three-dimensional (3-D) numerical and experimental geometric optimization study to maximize the total heat transfer rate between a bundle of finned tubes in a given volume and a given external flow both for circular and elliptic arrangements, for general staggered configurations. The optimization procedure started by recognizing the design limited space availability as a fixed volume constraint. The experimental results were obtained for circular and elliptic configurations with a fixed number of tubes (12), starting with an equilateral triangle configuration, which fitted uniformly into the fixed volume with a resulting maximum dimensionless tube-to-tube spacing S/2b = 1.5, where S is the actual spacing and b is the smaller ellipse semi-axis. Several experimental configurations were built by reducing the tube-to-tube spacings, identifying the optimal spacing for maximum heat transfer. Similarly, it was possible to investigate the existence of optima with respect to other two geometric degrees of freedom, i.e., tube eccentricity and fin-to-fin spacing. The results are reported for air as the external fluid in the laminar regime, for 125 and 100 Re 2b , where 2b is the ellipses smaller axis length. Circular and elliptic arrangements with the same flow obstruction cross-sectional area were compared on the basis of maximum total heat transfer. This criterion allows one to quantify the heat transfer gain in the most isolated way possible, by studying arrangements with equivalent total pressure drops independently of the tube cross section shape. This paper reports three-dimensional (3- D) numerical optimization results for finned circular and elliptic tubes arrangements, which are validated by direct comparison with experimental measurements with good agreement. Global optima with respect to tube-to-tube spacing, eccentricity and fin-tofin spacing ( 0.5 e 0.5, S/2b and 06 . 0 f for 125 and 100 Re 2b , respectively) were found and reported in general dimensionless variables. A relative heat transfer gain of up to 19% is observed in the optimal elliptic arrangement, as compared to the optimal circular one. The heat transfer gain, combined with the relative material mass reduction of up to 32% observed in the optimal elliptic arrangement in comparison to the circular one, show the elliptical arrangement has the potential for a considerably better overall performance and lower cost than the traditional circular geometry.


Author(s):  
Koji Nishi ◽  
Tomoyuki Hatakeyama ◽  
Shinji Nakagawa ◽  
Masaru Ishizuka

The thermal network method has a long history with thermal design of electronic equipment. In particular, a one-dimensional thermal network is useful to know the temperature and heat transfer rate along each heat transfer path. It also saves computation time and/or computation resources to obtain target temperature. However, unlike three-dimensional thermal simulation with fine pitch grids and a three-dimensional thermal network with sufficient numbers of nodes, a traditional one-dimensional thermal network cannot predict the temperature of a microprocessor silicon die hot spot with sufficient accuracy in a three-dimensional domain analysis. Therefore, this paper introduces a one-dimensional thermal network with average temperature nodes. Thermal resistance values need to be obtained to calculate target temperature in a thermal network. For this purpose, thermal resistance calculation methodology with simplified boundary conditions, which calculates thermal resistance values from an analytical solution, is also introduced in this paper. The effectiveness of the methodology is explored with a simple model of the microprocessor system. The calculated result by the methodology is compared to a three-dimensional heat conduction simulation result. It is found that the introduced technique matches the three-dimensional heat conduction simulation result well.


2018 ◽  
Vol 22 (2) ◽  
pp. 899-897
Author(s):  
Xiaohong Gui ◽  
Xiange Song ◽  
Baisheng Nie

The effects of contact angle and superheat on thin-film thickness and heat flux distribution occurring in a rectangle microgroove are numerically simulated. Accordingly, physical, and mathematical models are built in detail. Numerical results indicate that meniscus radius and thin-film thickness increase with the improvement of contact angle. The heat flux distribution in the thin-film region increases non-linearly as the contact angle decreases. The total heat transfer through the thin-film region increases with the improvement of superheat, and decreases as the contact angle increases. When the contact angle is equal to zero, the heat transfer in the thin-film region accounts for more than 80% of the total heat transfer. Intensive evaporation in the thin-film region plays a key role in heat transfer for the rectangle capillary microgroove. The liquid with higher wetting performance is more capable of playing the advantages of higher intensity heat transfer in thin- film region. The current investigation will result in a better understanding of thin- -film evaporation and its effect on the effective thermal conductivity in the rectangle microgroove.


Sign in / Sign up

Export Citation Format

Share Document