scholarly journals Organochlorine and Metal Contaminants in the Blood Plasma of Green Sturgeon Caught in Washington Coastal Estuaries

Author(s):  
Julie A. Layshock ◽  
Molly A. H. Webb ◽  
Olaf P. Langness ◽  
John Carlos Garza ◽  
Laura B. Heironimus ◽  
...  
2021 ◽  
Author(s):  
Julie Layshock ◽  
Molly Webb ◽  
Olaf Langness ◽  
John Carlos Garza ◽  
Laura Heironimus ◽  
...  

Abstract Non-invasive monitoring was used to evaluate the concentrations of forty contaminants in the blood plasma of the North American Green Sturgeon Acipenser medirostris caught and released from three estuaries in Washington State. The highest contaminant loads were found in fish caught in the most urbanized sites. Few statistical differences were found when evaluating contaminant levels according to sex, maturation stage, or distinct population segments of Green Sturgeon. The results indicate that recent exposure to legacy contaminants was reflected in Green Sturgeon plasma. Aldrin, 4,4-DDE, a-BHC, copper, and selenium were the most frequently detected contaminants. This study also explored the challenges of assessing toxicity in threatened species using non-lethal approaches. There is currently a lack of environmental contaminant monitoring data in estuaries frequented by Green Sturgeon and limited plasma to tissue toxicity correlations.


1970 ◽  
Vol 24 (03/04) ◽  
pp. 352-355 ◽  
Author(s):  
P Fantl

SummaryThe blood plasma factor XIII (fibrin stabilizing factor) is inactivated by mercuric ions and can be reactivated by serum - or plasma albumin of which the active component is mercaptalbumin. A relation between mercaptalbumin concentration and factor XIII activity is pointed out.


Author(s):  
Iyan Sopyan ◽  
Cynthia Jaya ◽  
Driyanti Rahayu

The use of simvastatin (SV) increases along with the increasing number of patients with hyperlipidemia and cardiovascular disease risk factors. Consequently, this condition leads to the increasing need of analytical determination of SV in blood plasma. Analysis of SV in human plasma using protein precipitation method and HPLC with UV detector has not been reported. This research was purpose to find out the rapid, accurate, and valid of SV analysis method in human plasma. In this research plasma samples were treated with protein precipitation method. The analyte was then analyzed using HPLC with C18 column 250x4 mm and 5 µm of particle size, the mobile phase contained of phosphate buffer 0.01 M (pH 4.0) and acetonitrile 30:70 v/v with flow rate 1 mL/minute, and detected at 239 nm. The analysis method was validated based on some parameters, such as selectivity, accuracy, precision, repeatability, linearity, LOD, LOQ, and system suitability. The result showed selectivity represented by Rs was 2.870, repeatability by its CV less than 2%, and linearity by its coefficient correlation (r) 0.9992 for concentration range 0.08-0.32 ppm. Based on chromatogram peak area, LOD and LOQ were 0.0132 and 0.0440 ppm respectively, accuracy and precision were 86.25-89.36% and 0.66-1.81% were obtained. The result of system suitability test from retention time and chromatogram peak area showed by its CV less than 2%. The analysis method was proved to be valid for SV analysis in human plasma


1956 ◽  
Vol 15 (2) ◽  
pp. 400-406
Author(s):  
I. R. Sibbald ◽  
J. P. Bowland ◽  
R. T. Berg

Author(s):  
A. V. Lizarev ◽  
V. A. Pankov

When exposed to noise and vibration in experimental animals there was a decrease in the content of threeiodinethyronine, thyroxin and adrenocorticotropic hormone in blood plasma after 15 and 30 days of experience. An increase in loads led to an increase in the level of threeiodinethyronine and thyroxin under vibration exposure and was normalized with noise. The content of adrenocorticotropic hormone leveled in both cases.


Sign in / Sign up

Export Citation Format

Share Document