Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as well as Household Point of Use Sites in Addis Ababa City, Ethiopia

2021 ◽  
Author(s):  
Bayable Atnafu ◽  
Adey Desta ◽  
Fasil Assefa
2021 ◽  
Author(s):  
Bayable Atanfu ◽  
Adey Desta ◽  
Fassil Assefa

Abstract BackgroundUnderstanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Despite cultivation-based methods routinelyemployed in monitoring drinking water quality, cultivation of specific indicator organisms alone is not always guarantee for assuring safe drinking water delivery. The presence of complex microbiomes in drinking water distribution systems affects treatment effectiveness leading to poor quality water which as a result affects health of human and animals. Drinking water treatment and distribution systems harbor various microbiota despite efforts made in improving water infrastructures and several waterborne diseases become serious problems in the water industry, specially, in developing Countries. Intermittent water supply, long-time of water storage, low water pressure in distribution systems, storage tankers and pipes as well as contaminated source water are among many of the factors responsible for low drinking water quality which in turn affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and several household points of use locations (taps). High throughput Illumina sequencing technology was employed by targeting V4 region of 16S rRNA following Illumina protocol to analyze the community structure of bacteria. ResultsThe core dominating taxa were Proteobacteria followed by Firmicutes, Bacteroidetes and Actinobacteria. Gamma proteobacteria were dominant among other Proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmanella, Acanthamoeba, Aspergillus, and Candida were also the abundant taxa found alongthe distribution systems. The shift in microbial community structure from source to point of uselocations were influenced by factors such as residual free chlorine, intermittent water supply andlong-time storage at the household. The shift in microbial community structure from source to point of use locations were influenced by factors such as residual free chlorine, intermittent water supply and long-time storage at the household.ConclusionsThe complex microbiota which was present in different sample sites receiving treated water from the two treatment plants (Legedadi and Gefersa) starting from source water to household point of consumption across the distribution systems in Addis Ababa brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk which, this, leads to morbidity and mortality. Findings of this research provide important and bassline information to understand the microbial profiles of drinking water along source water and distribution systems.


2021 ◽  
Author(s):  
Bayable Atanfu ◽  
Adey Desta ◽  
Fassil Assefa

Abstract Understanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Despite cultivation-based methods routinely employed in monitoring drinking water quality, cultivation of specific indicator organisms alone is not always guarantee for assuring safe drinking water delivery. The presence of complex microbiomes in drinking water distribution systems affects treatment effectiveness leading to poor quality water which as a result affects health of human and animals. Drinking water treatment and distribution systems harbor various microbiota despite efforts made in improving water infrastructures and several waterborne diseases become serious problems in the water industry, specially, in developing Countries. Intermittent water supply, long-time of water storage, low water pressure in distribution systems, storage tankers and pipes as well as contaminated source water are among many of the factors responsible for low drinking water quality which in turn affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and several household points of use locations (taps). High throughput Illumina sequencing technology was employed by targeting V4 region of 16S rRNA following Illumina protocol to analyze the community structure of bacteria. The core dominating taxa were Proteobacteria followed by Firmicutes, Bacteroidetes and Actinobacteria. Gamma proteobacteria were dominant among other Proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmanella, Acanthamoeba, Aspergillus, and Candida were also the abundant taxa found along the distribution systems. The shift in microbial community structure from source to point of use locations were influenced by factors such as residual free chlorine, intermittent water supply and long-time storage at the household. The shift in microbial community structure from source to point of use locations were influenced by factors such as residual free chlorine, intermittent water supply and long-time storage at the household. The complex microbiota which was present in different sample sites receiving treated water from the two treatment plants (Legedadi and Gefersa) starting from source water to household point of consumption across the distribution systems in Addis Ababa brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk which, this, leads to morbidity and mortality. Findings of this research provide important and bassline information to understand the microbial profiles of drinking water along source water and distribution systems.


2004 ◽  
Vol 50 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Minna M Keinänen ◽  
Pertti J Martikainen ◽  
Merja H Kontro (Suutari)

Traditional techniques to study microbes, such as culturable counts, microbial biomass, or microbial activity, do not give information on the microbial ecology of drinking water systems. The aim of this study was to analyze whether the microbial community structure and biomass differed in biofilms collected from two Finnish drinking water distribution systems (A and B) receiving conventionally treated (coagulation, filtration, disinfection) surface water. Phospholipid fatty acid methyl esters (PLFAs) and lipopolysaccharide 3-hydroxy fatty acid methyl esters (LPS 3-OH-FAs) were analyzed from biofilms as a function of water residence time and development time. The microbial communities were rather stabile through the distribution systems, as water residence time had minor effects on PLFA profiles. In distribution system A, the microbial community structure in biofilms, which had developed in 6 weeks, was more complex than those grown for 23 or 40 weeks. The microbial communities between the studied distribution systems differed, possibly reflecting the differences in raw water, water purification processes, and distribution systems. The viable microbial biomass, estimated on the basis of PLFAs, increased with increasing water residence time in both distribution systems. The quantitative amount of LPS 3-OH-FAs increased with increasing development time of biofilms of distribution system B. In distribution system A, LPS 3-OH-FAs were below the detection limit.Key words: biofilm, distribution system, 3-hydroxy fatty acid, microbial community, PLFA.


2018 ◽  
Vol 16 (6) ◽  
pp. 914-920 ◽  
Author(s):  
Qing Wu ◽  
Shuqun Li ◽  
Xiaofei Zhao ◽  
Xinhua Zhao

Abstract The abuse of antibiotics is becoming more serious as antibiotic use has increased. The sulfa antibiotics, sulfamerazine (SM1) and sulfamethoxazole (SMZ), are frequently detected in a wide range of environments. The interaction between SM1/SMZ and bacterial diversity in drinking water was investigated in this study. The results showed that after treatment with SM1 or SMZ at four different concentrations, the microbial community structure of the drinking water changed statistically significantly compared to the blank sample. At the genus level, the proportions of the different bacteria in drinking water may affect the degradation of the SM1/SMZ. The growth of bacteria in drinking water can be inhibited after the addition of SM1/SMZ, and bacterial community diversity in drinking water declined in this study. Furthermore, the resistance gene sul2 was induced by SM1 in the drinking water.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Huirong Lin ◽  
Shuting Zhang ◽  
Song Gong ◽  
Shenghua Zhang ◽  
Xin Yu

The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed different distributions of attached cells, extracellular proteins,α-polysaccharides, andβ-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales) and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence.


Author(s):  
Wenjin Xue ◽  
Christopher W. K. Chow ◽  
John van Leeuwen

Abstract The bacterial regrowth potential (BRP) method was utilised to indirectly measure the assimilable organic carbon (AOC) as an indicator for the assessment of the microbial regrowth potential in drinking water distribution systems. A model using various microbial growth parameters was developed in order to standardise the experimental interpretation for BRP measurement. This study used 82 experimental BRP data sets of water samples collected from the water treatment plant to locations (customer taps) in the distribution system. The data were used to model the BRP process (growth curve) by a data fitting procedure and to obtain a best-fitted equation. Statistical assessments and model validation for evaluating the equation obtained by fitting these 82 sets of data were conducted, and the results show average R2 values were 0.987 for treated water samples (collected at the plant prior to chlorination) and 0.983 for tap water (collected at the customer taps). The F values obtained from the F-test are all exceeded their corresponding F critical values, and the results from the t-test also showed a good outcome. These results indicate this model would be successfully applied in modelling BRP in drinking water supply systems.


Sign in / Sign up

Export Citation Format

Share Document