scholarly journals Instability and Stasis Among the Microbiome of Seagrass Leaves, Roots and Rhizomes, and Nearby Sediments Within a Natural pH Gradient

2021 ◽  
Author(s):  
Raymond B. Banister ◽  
Melbert T. Schwarz ◽  
Maoz Fine ◽  
Kim B. Ritchie ◽  
Erinn M. Muller

AbstractSeagrass meadows are hotspots of biodiversity with considerable economic and ecological value. The health of seagrass ecosystems is influenced in part by the makeup and stability of their microbiome, but microbiome composition can be sensitive to environmental change such as nutrient availability, elevated temperatures, and reduced pH. The objective of the present study was to characterize the bacterial community of the leaves, bulk samples of roots and rhizomes, and proximal sediment of the seagrass species Cymodocea nodosa along the natural pH gradient of Levante Bay, Vulcano Island, Italy. The bacterial community was determined by characterizing the 16S rRNA amplicon sequencing and analyzing the operational taxonomic unit classification of bacterial DNA within samples. Statistical analyses were used to explore how life-long exposure to different pH/pCO2 conditions may be associated with significant differences in microbial communities, dominant bacterial classes, and microbial diversity within each plant section and sediment. The microbiome of C. nodosa significantly differed among all sample types and site-specific differences were detected within sediment and root/rhizome microbial communities, but not the leaves. These results show that C. nodosa leaves have a consistent microbial community even across a pH range of 8.15 to 6.05. The ability for C. nodosa to regulate and maintain microbial structure may indicate a semblance of resilience within these vital ecosystems under projected changes in environmental conditions such as ocean acidification.

2012 ◽  
Vol 65 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Dalit Meron ◽  
Maria-Cristina Buia ◽  
Maoz Fine ◽  
Ehud Banin

2017 ◽  
Author(s):  
Eric R Hester ◽  
Sarah F. Harpenslager ◽  
Josepha MH van Diggelen ◽  
Leon L Lamers ◽  
Mike SM Jetten ◽  
...  

AbstractWetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and ecosystem functioning such as control of greenhouse gas emissions. Therefore it is important to understand how increased N input into pristine wetlands affects the composition and activity of micro-organisms, especially in interaction with dominant wetland plants. In a series of incubations analyzed over 90 days, we disentangle the effects of N fertilization on the microbial community in bulk soil and the rhizosphere ofJuncus acutiflorus, a common and abundant graminoid wetland plant. We observed an increase in greenhouse gas emissions when N is increased in incubations withJ. acutiflorus, changing the system from a greenhouse gas sink to a source. Using 16S rRNA amplicon sequencing and metagenomics, we determined that the bacterial orders Opitutales, Subgroup-6 Acidobacteria and Sphingobacteriales significantly responded to high N availability and we hypothesize that these groups are contributing to the increased greenhouse gas emissions. These results indicated that increased N input leads to shifts in microbial activity within the rhizosphere, severely altering N cycling dynamics. Our study provides a framework for connecting environmental conditions of wetland bulk and rhizosphere soil to the structure and metabolic output of microbial communities.


2021 ◽  
Author(s):  
Ying Zhang ◽  
Yang Huo ◽  
Zhiruo Zhang ◽  
Suiyi Zhu ◽  
Wei Fan ◽  
...  

Abstract We conducted physicochemical parameters analysis, 16S rRNA amplicon sequencing and real-time quantitative polymerase chain reaction to explore the impact of human inputs on the bacterioplankton communities within a tributary of the largest river flowing through a megacity in northeast China. Agriculture largely accounted for the alteration of diversity and functions of the microbial communities. Furthermore, nutrients were significantly declined at the reservoir outlet, and WWTP effluent discharge caused changes in the river microbial community. NH3-N and NO3--N were the main environmental factors that drive the shift of the bacteria community, and rare taxa played a more important role in the response to environmental changes compared with the abundant ones. The occurrence of the human-specific fecal indicator was mostly derived from agriculture, and its increase in relative abundance was observed in the effluent. Thus, our study provides guidance for ecological assessment and management of rivers by revealing the response pattern of river bacterioplankton to multiple types of anthropogenic stressors.


2020 ◽  
Author(s):  
Kasun H Bodawatta ◽  
Katerina Puzejova ◽  
Katerina Sam ◽  
Michael Poulsen ◽  
Knud A. Jønsson

Abstract Background Comprehensive studies of wild bird microbiomes are often limited by difficulties of sample acquisition. However, widely used non-invasive cloacal swab methods and under-explored museum specimens preserved in alcohol provide promising avenues to increase our understanding of wild bird microbiomes, provided that they accurately portray natural microbial community compositions. To investigate this assertion, we used 16S rRNA amplicon sequencing of Great tit (Parus major) gut microbiomes to compare 1) microbial communities obtained from dissected digestive tract regions and cloacal swabs, and 2) microbial communities obtained from freshly dissected gut regions and from samples preserved in alcohol for two weeks or two months, respectively. Results We found no significant differences in alpha diversities in communities of different gut regions and cloacal swabs (except in OTU richness between the dissected cloacal region and the cloacal swabs), or between fresh and alcohol preserved samples. However, we did find significant differences in beta diversity and community composition of cloacal swab samples compared to different gut regions. Despite these community-level differences, swab samples qualitatively captured the majority of the bacterial diversity throughout the gut better than any single compartment. Bacterial community compositions of alcohol-preserved specimens did not differ significantly from freshly dissected samples, although some low-abundant taxa were lost in the alcohol preserved specimens. Conclusions Our findings suggest that cloacal swabs, similar to non-invasive fecal sampling, qualitatively depict the gut microbiota composition without having to collect birds to extract the full digestive tract. Secondly, the satisfactory depiction of gut microbial communities in alcohol preserved samples opens up for the possibility of using an enormous resource readily available through museum collections to characterize bird gut microbiomes. The use of extensive museum specimen collections of birds for microbial gut analyses would allow for investigations of temporal patterns of wild bird gut microbiomes, including the potential effects of climate change and anthropogenic impacts. Overall, the utilization of cloacal swabs and museum alcohol specimens can positively impact bird gut microbiome research to help increase our understanding of the role and evolution of wild bird hosts and gut microbial communities.


Author(s):  
Peter J. Flynn ◽  
Catherine L. D’Amelio ◽  
Jon G. Sanders ◽  
Jacob A. Russell ◽  
Corrie S. Moreau

Microbial communities within the animal digestive tract often provide important functions for their hosts. The composition of eukaryotes' gut bacteria can be shaped by host diet, vertical bacterial transmission, and physiological variation within the digestive tract. In several ant taxa, recent findings have demonstrated that nitrogen provisioning by symbiotic bacteria makes up for deficiencies in herbivorous diets. Using 16S rRNA amplicon sequencing and qPCR, this study examined bacterial communities at a fine scale across one such animal group, the turtle ant genus Cephalotes. We analyzed the composition and colonization density across four portions of the digestive tract to understand how bacterial diversity is structured across gut compartments, potentially allowing for specific metabolic functions of benefit to the host. In addition, we aimed to understand if caste differentiation or host relatedness influences the gut bacterial communities of Cephalotes ants. Microbial communities were found to vary strongly across Cephalotes gut compartments in ways that transcend both caste and host phylogeny. Despite this, caste and host phylogeny still have detectable effects. We demonstrated microbial community divergence across gut compartments, possibly due to the varying function of each gut compartment for digestion. IMPORTANCE Gut compartments play an important role in structuring the microbial community within individual ants. The gut chambers of the turtle ant digestive tract differ remarkably in symbiont abundance and diversity. Furthermore, caste type explains some variation in the microbiome composition. Finally, the evolutionary history of the Cephalotes species structures the microbiome in our study, which elucidates a trend in which related ants maintain related microbiomes, conceivably owing to co-speciation. Amazingly, gut compartment-specific signatures of microbial diversity, relative abundance, composition, and abundance have been conserved over Cephalotes evolutionary history, signifying that this symbiosis has been largely stable for over 50 million years.


2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Sania Arif ◽  
Elias Schliekmann ◽  
Michael Hoppert

ABSTRACT The 16S rRNA amplicons from biofilms inhabiting rocks near various water bodies of Marsberg Copper Mine (Rhenish Massif, Germany) reveal the diversity of their microbial communities. The abundance of Chloroflexi and Cyanobacteria taxa in the biofilms near leachate streams indicated the selective enrichment of Ktedonobacteria and Oxyphotobacteria members.


2020 ◽  
Vol 96 (8) ◽  
Author(s):  
Lu Wang ◽  
Fiona Tomas ◽  
Ryan S Mueller

ABSTRACT Seagrasses are vital coastal ecosystem engineers, which are mutualistically associated with microbial communities that contribute to the ecosystem services provided by meadows. The seagrass microbiome and sediment microbiota play vital roles in belowground biogeochemical and carbon cycling. These activities are influenced by nutrient, carbon and oxygen availability, all of which are modulated by environmental factors and plant physiology. Seagrass meadows are increasingly threatened by nutrient pollution, and it is unknown how the seagrass microbiome will respond to this stressor. We investigated the effects of fertilization on the physiology, morphology and microbiome of eelgrass (Zostera marina) cultivated over 4 weeks in mesocosms. We analyzed the community structure associated with eelgrass leaf, root and rhizosphere microbiomes, and of communities from water column and bulk sediment using 16S rRNA amplicon sequencing. Fertilization led to a higher number of leaves compared with that of eelgrass kept under ambient conditions. Additionally, fertilization led to enrichment of sulfur and nitrogen bacteria in belowground communities. These results suggest nutrient enrichment can stimulate belowground biogeochemical cycling, potentially exacerbating sulfide toxicity in sediments and decreasing future carbon sequestration stocks.


Sign in / Sign up

Export Citation Format

Share Document