Are cell membrane nanotubes the ancestors of the nervous system?

2019 ◽  
Vol 48 (7) ◽  
pp. 593-598 ◽  
Author(s):  
H. Moysés Nussenzveig
1996 ◽  
Vol 109 (7) ◽  
pp. 1749-1757 ◽  
Author(s):  
N. Soussi-Yanicostas ◽  
J.P. Hardelin ◽  
M.M. Arroyo-Jimenez ◽  
O. Ardouin ◽  
R. Legouis ◽  
...  

The KAL gene is responsible for the X-chromosome linked form of Kallmann's syndrome in humans. Upon transfection of CHO cells with a human KAL cDNA, the corresponding encoded protein, KALc, was produced. This protein is N-glycosylated, secreted in the cell culture medium, and is localized at the cell surface. Several lines of evidence indicate that heparan-sulfate chains of proteoglycan(s) are involved in the binding of KALc to the cell membrane. Polyclonal and monoclonal antibodies to the purified KALc were generated. They allowed us to detect and characterize the protein encoded by the KAL gene in the chicken central nervous system at late stages of embryonic development. This protein is synthesized by definite neuronal cell populations including Purkinje cells in the cerebellum, mitral cells in the olfactory bulbs and several subpopulations in the optic tectum and the striatum. The protein, with an approximate molecular mass of 100 kDa, was named anosmin-1 in reference to the deficiency of the sense of smell which characterizes the human disease. Anosmin-1 is likely to be an extracellular matrix component. Since heparin treatment of cell membrane fractions from cerebellum and tectum resulted in the release of the protein, we suggest that one or several heparan-sulfate proteoglycans are involved in the binding of anosmin-1 to the membranes in vivo.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Domenico De Berardis ◽  
Stefano Marini ◽  
Monica Piersanti ◽  
Marilde Cavuto ◽  
Giampaolo Perna ◽  
...  

Cholesterol is a core component of the central nervous system, essential for the cell membrane stability and the correct functioning of neurotransmission. It has been observed that cholesterol may be somewhat associated with suicidal behaviours. Therefore, the aim of this paper was to elucidate current facts and views about the role of cholesterol levels in mood disorders. The majority of the studies reviewed in the present paper suggest an interesting relationship between cholesterol (especially lower levels) and suicidality. On the other hand, particularly during the last years, relationships between serum cholesterol and suicidality were doubted on the basis of some recent studies that have not found any correlation. However, the debate on relationships between cholesterol and suicide is open and longitudinal studies on a larger sample of patients are needed to further clarify this important issue.


Bioprinting ◽  
2021 ◽  
pp. 98-118
Author(s):  
Kenneth Douglas

Abstract: This chapter recounts bioprinting studies of skin, bone, skeletal muscle, and neuromuscular junctions. The chapter begins with a study of bioprinted skin designed to enable the creation of skin with a uniform pigmentation. The chapter relates two very different approaches to bioprinted bone: a synthetic bone called hyperelastic bone and a strategy that prints cartilage precursors to bone and then induces the conversion of the cartilage to bone by judicious choice of bioinks. Muscles move bone, and the chapter discusses an investigation of bioprinted skeletal muscle. Finally, the chapter considers an attempt to bioprint a neuromuscular junction, a synapse—a minute gap—of about 20 billionths of a meter between a motor neuron and the cell membrane of a skeletal muscle cell. A motor neuron is a nerve in the central nervous system that sends signals to the muscles of the body.


Author(s):  
Erwin B. Montgomery

In many ways, post-operative DBS programming is “prescribing electricity” in much the same sense as “prescribing medications.” The principles of pharmacokinetics and pharmacodynamics that guide the rational use of medications find parallels in DBS. Many drugs have their effect by binding to ligand-gated channels, particularly channels that control the flow of electrical charges, in the form of ions across the cell membrane of the neuron in the soma. The binding of drugs to receptors can open the receptor to approximate the normal opening by endogenous neurotransmitters, or to block the channel from opening when endogenous neurotransmitters are released. In the case of DBS, the electrical charges manipulated in the nervous system similarly affect neuronal membrane channels; however, these initially and primarily are voltage gated ionic conductance channels, which are described in detail in this chapter.


Author(s):  
Machiel J. Zwarts

Essential to all living creatures is the ability to convey information. In addition motor responses are required, for example running. This all is possible due to the ability of specialized cells to conduct information along the cell membrane by means of action potentials (AP) made possible by the charged cell membrane, which has selective permeability for different ions. Voltage and ligand sensitive ion channels are responsible for sudden changes in selective permeability of the membrane resulting in local depolarization of the membrane. The neuromuscular junction is a highly specialized region of the distal motor axon that is responsible for the transferring of activation from nerve to muscle. All these systems and subsystems can fail and a thorough understanding is necessary in order to understand the changes a clinical neurophysiologist can encounter while recording from the human nervous system in cases of disorders of brain, nerve and muscle.


Author(s):  
Rahul Sawarkar ◽  
Saurabh Bhandarkar ◽  
Sachin Mendhi ◽  
Sachin More

Channelopathies is group of diseases which is concerned with changes occur in the structural unit i.e., cell and its subunits (channels). Particularly disturbances in equilibrium potential in cell membrane carry toward the major cause of disease. Study of channel physiology with its mechanism is essential methodology to establish the differential factor in between normal phenomenon and disorder. Specific channels permit movement of selected ions through cellular membranes and are of important importance during variety of physiological processes, particularly in excitable tissues. In this review channelopathies in diseases like Central nervous system, Cardiovascular system, Renal system with their mechanism of action of channel disruption and treatment approaches have been covered.


2021 ◽  
Vol 15 ◽  
Author(s):  
Christina Chatzi ◽  
Gary L. Westbrook

Dendritic spines, the distinctive postsynaptic feature of central nervous system (CNS) excitatory synapses, have been studied extensively as electrical and chemical compartments, as well as scaffolds for receptor cycling and positioning of signaling molecules. The dynamics of the shape, number, and molecular composition of spines, and how they are regulated by neural activity, are critically important in synaptic efficacy, synaptic plasticity, and ultimately learning and memory. Dendritic spines originate as outward protrusions of the cell membrane, but this aspect of spine formation and stabilization has not been a major focus of investigation compared to studies of membrane protrusions in non-neuronal cells. We review here one family of proteins involved in membrane curvature at synapses, the BAR (Bin-Amphiphysin-Rvs) domain proteins. The subfamily of inverse BAR (I-BAR) proteins sense and introduce outward membrane curvature, and serve as bridges between the cell membrane and the cytoskeleton. We focus on three I-BAR domain proteins that are expressed in the central nervous system: Mtss2, MIM, and IRSp53 that promote negative, concave curvature based on their ability to self-associate. Recent studies suggest that each has distinct functions in synapse formation and synaptic plasticity. The action of I-BARs is also shaped by crosstalk with other signaling components, forming signaling platforms that can function in a circuit-dependent manner. We discuss another potentially important feature—the ability of some BAR domain proteins to impact the function of other family members by heterooligomerization. Understanding the spatiotemporal resolution of synaptic I-BAR protein expression and their interactions should provide insights into the interplay between activity-dependent neural plasticity and network rewiring in the CNS.


2007 ◽  
Vol 39 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Aleš Iglič ◽  
Maruša Lokar ◽  
Blaž Babnik ◽  
Tomaž Slivnik ◽  
Peter Veranič ◽  
...  

2021 ◽  
Author(s):  
Kathryn R Taylor ◽  
Tara Barron ◽  
Helena Zhang ◽  
Alexa C Hui ◽  
Griffin G Hartmann ◽  
...  

The nervous system plays an increasingly appreciated role in the regulation of cancer. In malignant gliomas, neuronal activity drives tumor progression not only through paracrine signaling factors such as neuroligin-3 and brain-derived neurotrophic factor (BDNF), but also through electrophysiologically functional neuron-to-glioma synapses. Malignant synapses are mediated by calcium-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors in both pediatric and adult high-grade gliomas, and consequent depolarization of the glioma cell membrane drives tumor proliferation. The nervous system exhibits plasticity of both synaptic connectivity and synaptic strength, contributing to neural circuit form and functions. In health, one factor that promotes plasticity of synaptic connectivity and strength is activity-regulated secretion of the neurotrophin BDNF. Here, we show that malignant synapses exhibit similar plasticity regulated by BDNF-TrkB (tropomyosin receptor kinase B) signaling. Signaling through the receptor TrkB, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. This potentiation of malignant synaptic strength shares mechanistic features with the long-term potentiation (LTP) that is thought to contribute to memory and learning in the healthy brain. BDNF-TrkB signaling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of TrkB in human glioma cells exerts growth inhibitory effects in vivo and in neuron:glioma co-cultures that cannot be explained by classical growth factor signaling alone. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of pediatric glioblastoma and diffuse intrinsic pontine glioma (DIPG). Taken together, these findings indicate that BDNF-TrkB signaling promotes malignant synaptic plasticity and augments tumor progression.


Sign in / Sign up

Export Citation Format

Share Document