scholarly journals Revisiting I-BAR Proteins at Central Synapses

2021 ◽  
Vol 15 ◽  
Author(s):  
Christina Chatzi ◽  
Gary L. Westbrook

Dendritic spines, the distinctive postsynaptic feature of central nervous system (CNS) excitatory synapses, have been studied extensively as electrical and chemical compartments, as well as scaffolds for receptor cycling and positioning of signaling molecules. The dynamics of the shape, number, and molecular composition of spines, and how they are regulated by neural activity, are critically important in synaptic efficacy, synaptic plasticity, and ultimately learning and memory. Dendritic spines originate as outward protrusions of the cell membrane, but this aspect of spine formation and stabilization has not been a major focus of investigation compared to studies of membrane protrusions in non-neuronal cells. We review here one family of proteins involved in membrane curvature at synapses, the BAR (Bin-Amphiphysin-Rvs) domain proteins. The subfamily of inverse BAR (I-BAR) proteins sense and introduce outward membrane curvature, and serve as bridges between the cell membrane and the cytoskeleton. We focus on three I-BAR domain proteins that are expressed in the central nervous system: Mtss2, MIM, and IRSp53 that promote negative, concave curvature based on their ability to self-associate. Recent studies suggest that each has distinct functions in synapse formation and synaptic plasticity. The action of I-BARs is also shaped by crosstalk with other signaling components, forming signaling platforms that can function in a circuit-dependent manner. We discuss another potentially important feature—the ability of some BAR domain proteins to impact the function of other family members by heterooligomerization. Understanding the spatiotemporal resolution of synaptic I-BAR protein expression and their interactions should provide insights into the interplay between activity-dependent neural plasticity and network rewiring in the CNS.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1372
Author(s):  
Tengrui Shi ◽  
Jianxi Song ◽  
Guanying You ◽  
Yujie Yang ◽  
Qiong Liu ◽  
...  

MsrB1 used to be named selenoprotein R, for it was first identified as a selenocysteine containing protein by searching for the selenocysteine insert sequence (SECIS) in the human genome. Later, it was found that MsrB1 is homologous to PilB in Neisseria gonorrhoeae, which is a methionine sulfoxide reductase (Msr), specifically reducing L-methionine sulfoxide (L-Met-O) in proteins. In humans and mice, four members constitute the Msr family, which are MsrA, MsrB1, MsrB2, and MsrB3. MsrA can reduce free or protein-containing L-Met-O (S), whereas MsrBs can only function on the L-Met-O (R) epimer in proteins. Though there are isomerases existent that could transfer L-Met-O (S) to L-Met-O (R) and vice-versa, the loss of Msr individually results in different phenotypes in mice models. These observations indicate that the function of one Msr cannot be totally complemented by another. Among the mammalian Msrs, MsrB1 is the only selenocysteine-containing protein, and we recently found that loss of MsrB1 perturbs the synaptic plasticity in mice, along with the astrogliosis in their brains. In this review, we summarized the effects resulting from Msr deficiency and the bioactivity of selenium in the central nervous system, especially those that we learned from the MsrB1 knockout mouse model. We hope it will be helpful in better understanding how the trace element selenium participates in the reduction of L-Met-O and becomes involved in neurobiology.


1996 ◽  
Vol 109 (7) ◽  
pp. 1749-1757 ◽  
Author(s):  
N. Soussi-Yanicostas ◽  
J.P. Hardelin ◽  
M.M. Arroyo-Jimenez ◽  
O. Ardouin ◽  
R. Legouis ◽  
...  

The KAL gene is responsible for the X-chromosome linked form of Kallmann's syndrome in humans. Upon transfection of CHO cells with a human KAL cDNA, the corresponding encoded protein, KALc, was produced. This protein is N-glycosylated, secreted in the cell culture medium, and is localized at the cell surface. Several lines of evidence indicate that heparan-sulfate chains of proteoglycan(s) are involved in the binding of KALc to the cell membrane. Polyclonal and monoclonal antibodies to the purified KALc were generated. They allowed us to detect and characterize the protein encoded by the KAL gene in the chicken central nervous system at late stages of embryonic development. This protein is synthesized by definite neuronal cell populations including Purkinje cells in the cerebellum, mitral cells in the olfactory bulbs and several subpopulations in the optic tectum and the striatum. The protein, with an approximate molecular mass of 100 kDa, was named anosmin-1 in reference to the deficiency of the sense of smell which characterizes the human disease. Anosmin-1 is likely to be an extracellular matrix component. Since heparin treatment of cell membrane fractions from cerebellum and tectum resulted in the release of the protein, we suggest that one or several heparan-sulfate proteoglycans are involved in the binding of anosmin-1 to the membranes in vivo.


2018 ◽  
Vol 218 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Liang Wang ◽  
Ziyi Yan ◽  
Helena Vihinen ◽  
Ove Eriksson ◽  
Weihuan Wang ◽  
...  

Mitochondrial function is closely linked to its dynamic membrane ultrastructure. The mitochondrial inner membrane (MIM) can form extensive membrane invaginations known as cristae, which contain the respiratory chain and ATP synthase for oxidative phosphorylation. The molecular mechanisms regulating mitochondrial ultrastructure remain poorly understood. The Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of diverse cellular processes related to membrane remodeling and dynamics. Whether BAR domain proteins are involved in sculpting membranes in specific submitochondrial compartments is largely unknown. In this study, we report FAM92A1 as a novel BAR domain protein localizes to the matrix side of the MIM. Loss of FAM92A1 caused a severe disruption to mitochondrial morphology and ultrastructure, impairing organelle bioenergetics. Furthermore, FAM92A1 displayed a membrane-remodeling activity in vitro, inducing a high degree of membrane curvature. Collectively, our findings uncover a role for a BAR domain protein as a critical organizer of the mitochondrial ultrastructure that is indispensable for mitochondrial function.


2014 ◽  
Vol 82 (5) ◽  
pp. 1880-1890 ◽  
Author(s):  
Philippa J. Randall ◽  
Nai-Jen Hsu ◽  
Dirk Lang ◽  
Susan Cooper ◽  
Boipelo Sebesho ◽  
...  

ABSTRACTMycobacterium tuberculosisinfection of the central nervous system is thought to be initiated once the bacilli have breached the blood brain barrier and are phagocytosed, primarily by microglial cells. In this study, the interactions ofM. tuberculosiswith neuronsin vitroandin vivowere investigated. The data obtained demonstrate that neurons can act as host cells forM. tuberculosis.M. tuberculosisbacilli were internalized by murine neuronal cultured cells in a time-dependent manner after exposure, with superior uptake by HT22 cells compared to Neuro-2a cells (17.7% versus 9.8%). Internalization ofM. tuberculosisbacilli by human SK-N-SH cultured neurons suggested the clinical relevance of the findings. Moreover, primary murine hippocampus-derived neuronal cultures could similarly internalizeM. tuberculosis. InternalizedM. tuberculosisbacilli represented a productive infection with retention of bacterial viability and replicative potential, increasing 2- to 4-fold within 48 h.M. tuberculosisbacillus infection of neurons was confirmedin vivoin the brains of C57BL/6 mice after intracerebral challenge. This study, therefore, demonstrates neurons as potential new target cells forM. tuberculosiswithin the central nervous system.


2013 ◽  
Vol 33 (7) ◽  
pp. 1115-1126 ◽  
Author(s):  
Basavaraju G Sanganahalli ◽  
Peter Herman ◽  
Fahmeed Hyder ◽  
Sridhar S Kannurpatti

Local calcium (Ca2 +) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca2 + uptake. Mitochondria take up Ca2 + through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca2 +. Known only in vitro, the in vivo impact of mCU activity may reveal Ca2 + -mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca2 + sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca2 + distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca2 + -dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca2 + uptake-mediated integrative role of in vivo mitochondria on neocortical activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Domenico De Berardis ◽  
Stefano Marini ◽  
Monica Piersanti ◽  
Marilde Cavuto ◽  
Giampaolo Perna ◽  
...  

Cholesterol is a core component of the central nervous system, essential for the cell membrane stability and the correct functioning of neurotransmission. It has been observed that cholesterol may be somewhat associated with suicidal behaviours. Therefore, the aim of this paper was to elucidate current facts and views about the role of cholesterol levels in mood disorders. The majority of the studies reviewed in the present paper suggest an interesting relationship between cholesterol (especially lower levels) and suicidality. On the other hand, particularly during the last years, relationships between serum cholesterol and suicidality were doubted on the basis of some recent studies that have not found any correlation. However, the debate on relationships between cholesterol and suicide is open and longitudinal studies on a larger sample of patients are needed to further clarify this important issue.


Bioprinting ◽  
2021 ◽  
pp. 98-118
Author(s):  
Kenneth Douglas

Abstract: This chapter recounts bioprinting studies of skin, bone, skeletal muscle, and neuromuscular junctions. The chapter begins with a study of bioprinted skin designed to enable the creation of skin with a uniform pigmentation. The chapter relates two very different approaches to bioprinted bone: a synthetic bone called hyperelastic bone and a strategy that prints cartilage precursors to bone and then induces the conversion of the cartilage to bone by judicious choice of bioinks. Muscles move bone, and the chapter discusses an investigation of bioprinted skeletal muscle. Finally, the chapter considers an attempt to bioprint a neuromuscular junction, a synapse—a minute gap—of about 20 billionths of a meter between a motor neuron and the cell membrane of a skeletal muscle cell. A motor neuron is a nerve in the central nervous system that sends signals to the muscles of the body.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 330 ◽  
Author(s):  
Paula Sanchis ◽  
Olaya Fernández-Gayol ◽  
Gemma Comes ◽  
Anna Escrig ◽  
Mercedes Giralt ◽  
...  

Background: Interleukin-6 (IL-6) is a pleiotropic and multifunctional cytokine that plays a critical role in induction of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Although EAE has always been considered a peripherally elicited disease, Il6 expression exclusively within central nervous system is sufficient to induce EAE development. Neurons, astrocytes, and microglia can secrete and respond to IL-6. Methods: To dissect the relevance of each cell source for establishing EAE, we generated and immunized conditional Il6 knockout mice for each of these cell types with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) peptide dissolved in complete Freund’s adjuvant (CFA) and supplemented with Mycobacterium tuberculosis. Results and conclusions: The combined results reveal a minor role for Il6 expression in both astrocytes and microglia for symptomatology and neuropathology of EAE, whereas neuronal Il6 expression was not relevant for the variables analyzed.


Sign in / Sign up

Export Citation Format

Share Document