Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L.

2010 ◽  
Vol 89 (6) ◽  
pp. 1701-1707 ◽  
Author(s):  
Smita P. Chavan ◽  
Vinayak H. Lokhande ◽  
Kirti M. Nitnaware ◽  
Tukaram D. Nikam
2015 ◽  
Vol 123 (3) ◽  
pp. 523-533 ◽  
Author(s):  
Christophe Bienaimé ◽  
Aurélie Melin ◽  
Lamine Bensaddek ◽  
Jacques Attoumbré ◽  
Edmundo Nava-Saucedo ◽  
...  

Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


2005 ◽  
Vol 43 (3) ◽  
pp. 293-298 ◽  
Author(s):  
Gabriella Pasqua ◽  
Barbara Monacelli ◽  
Nadia Mulinacci ◽  
Simona Rinaldi ◽  
Catia Giaccherini ◽  
...  

2017 ◽  
Vol 130 (12) ◽  
pp. 2049-2055 ◽  
Author(s):  
Louise Weston ◽  
Jessica Greenwood ◽  
Paul Nurse

1987 ◽  
Vol 7 (9) ◽  
pp. 3361-3364
Author(s):  
M Azoulay ◽  
C G Webb ◽  
L Sachs

Gene expression for the four different growth-regulatory proteins for cells of the myeloid hematopoietic cell lineages was analyzed in mouse fetal and extraembryonic tissues at various stages of development. The macrophage growth inducer MGI-1M (colony-stimulating factor 1) was the only myeloid hematopoietic growth regulator detected as both mRNA and bioactive protein during fetal development. This regulator was produced predominantly in extraembryonic tissues, and the production of hematopoietic growth regulators in embryogenesis was regulated by transcriptional and posttranscriptional controls.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2850-2850
Author(s):  
Lorena L. Figueiredo-Pontes ◽  
Ana Silvia G. Lima ◽  
Barbara A. Santana-Lemos ◽  
Ana Paula A. Lange ◽  
Luciana C. Oliveira ◽  
...  

Abstract The effects of TGFβ signaling in tumorigenesis is both cell type and context-dependent. Although this cytokine may behave as tumor suppressor in early stages of malignant transformation, tumor progression is often accompanied by altered TGFβ responsiveness and increased angiogenesis. Acute Promyelocytic Leukemia (APL) is a distinct subtype of Acute Myelogenous Leukemia characterized by rearrangements involving the PML and RARα genes on chromosomes 15 and 17, respectively. The expression of the PML/RARα oncoprotein leads to PML delocalization and functional impairment. Among its physiological roles, PML is a regulator of the TGFβ pathway, and the expression of PML-RARα has been associated with TGFβ resistance to differentiation and cell growth inhibition. Moreover, TGFβ is known to regulate Vascular Endothelial Growth Factor (VEGF) production and response. APL patients present increased bone marrow microvessel density, and the APL cell line NB4 was shown to secrete high levels of VEGF. Our aim was to test on APL the effect of Halofuginone (HF), an alkaloid that has been shown to inhibit TGFβ in other cell types. Cell cultures of NB4 and NB4-R2 cell lines, this latter resistant to ATRA, were treated with increasing doses of HF (6.25, 12.5, 25, 50, 100 ng/ml) and 10−6M of ATRA during 72 hours. Cell proliferation and apoptosis were accessed by flow cytometry using a simultaneous staining with bromodeoxyuridine and 7AAD. In NB4, there was significant cell growth inhibition with HF doses superior to 25 ng/ml (P <0.001). In addition, a 1.5 fold increase in apoptosis was seen with 100 ng/ml (P <0.001). In NB4-R2, cell growth inhibition was observed with 50 and 100 ng/ml and apoptosis with 100 ng/ml of HF (P < 0.001). HF was able to block the cell cycle progression at G1/S transition and, simultaneously, reduce Bcl2 protein expression in both cell lines. Concomitantly, mRNA expression of TGFβ target genes involved in cell cycle regulation was evaluated by real time PCR. Results showed the upregulation of p15, SMAD3, TGFβ and TGFβRI, and downregulation of c-MYC by treatment with high doses of HF (75 and 100 ng/ml). VEFG and TGFβ production was measured by ELISA in supernatants after 72 hours of culture. Significant reduction of VEGF levels was detected in samples treated with HF at doses higher than 25 ng/ml or with ATRA (P=0.018) and a decrease of TGFβ secretion was observed with 50 and 100 ng/ml of HF (P=0.026). Nuclear extracts from cell cultures treated as above were obtained, and western blot analysis showed that higher doses of HF (50 to 100 ng/ml) reduced TGFβ and Smad 4 expression. Our results indicate that HF was able to inhibit TGFβ at protein level and consequently to reduce VEGF production and thus may revert APL aberrant angiogenesis. As TGFβ transcription is at least in part auto-regulated, HF treatment was associated with an increase of TGFβ transcripts. These effects were independent of ATRA sensitivity, since both cell lines presented the same behavior. Although the disruption of TGFβ signaling itself is not sufficient to initiate malignant transformation, it may be a critical second step that contributes to leukemia progression. In this context, HF may have therapeutic potential in APL.


2009 ◽  
Vol 64 (1-2) ◽  
pp. 68-72 ◽  
Author(s):  
Ying Yang ◽  
Feng He ◽  
Longjiang Yu ◽  
Jiaxing Ji ◽  
Yezhen Wang

Cell growth and flavonoid production in cell suspension cultures of Glycyrrhiza inflata Batal were investigated under various initial inoculum densities, and sucrose and nitrogen concentrations to develop an optimization method for an improved flavonoid production. Both biomass accumulation and flavonoid production exhibited an “S” curve in one culture cycle, with the greatest value obtained on day 21, which showed that cell growth and fl avonoid biosynthesis went along isochronously. Moreover, according to the biomass and flavonoid production, the appreciate inoculum density, and the sucrose and nitrogen concentrations were 50 g FW L-1, 50 g L-1 and 120 mmol L-1, respectively. In addition, cell growth and flavonoid production showed a peak of 16.4 g DW L-1 and 95.7 mg L-1 on day 21 under the optimizing conditions, respectively. The flavonoid productivity of the cells which were cultured for 3 years is higher than that of the 3-year-old plant, which suggested that flavonoid production by cell cultures of G. inflata is a potentially profitable method. Therefore, this work is considered to be helpful for efficient large-scale bioprocessing of cell cultures in bioreactors.


2015 ◽  
Vol 9 (S9) ◽  
Author(s):  
Leticia Liste-Calleja ◽  
Tibor Anderlei ◽  
Jonatan López-Repullo ◽  
Adrián Urbano ◽  
Martí Lecina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document