Integrative analysis identifies the quality advantage and corresponding regulatory mechanism of paddy field–cultured crayfish (Procambarus clarkii)

Author(s):  
Jian Zhou ◽  
Zhongmeng Zhao ◽  
Lu Zhang ◽  
Zhipeng Huang ◽  
Han Zhao ◽  
...  
Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 155
Author(s):  
Yuchen Zhang ◽  
Lina Zhu ◽  
Xin Wang

Pancreatic ductal adenocarcinoma (PDAC), the predominant subtype of pancreatic cancer, has been reported with equal mortality and incidence for decades. The lethality of PDAC is largely due to its late presentation, when surgical resection is no longer an option. Similar to other major malignancies, it is now clear that PDAC is not a single disease, posing a great challenge to precise selection of patients for optimized adjuvant therapy. A representative study found that PDAC comprises four distinct molecular subtypes: squamous, pancreatic progenitor, immunogenic, and aberrantly differentiated endocrine exocrine (ADEX). However, little is known about the molecular mechanisms underlying specific PDAC subtypes, hampering the design of novel targeted agents. In this study we performed network inference that integrates miRNA expression and gene expression profiles to dissect the miRNA regulatory mechanism specific to the most aggressive squamous subtype of PDAC. Master regulatory analysis revealed that the particular subtype of PDAC is predominantly influenced by miR-29c and miR-192. Further integrative analysis found miR-29c target genes LOXL2, ADAM12 and SERPINH1, which all showed strong association with prognosis. Furthermore, we have preliminarily revealed that the PDAC cell lines with high expression of these miRNA target genes showed significantly lower sensitivities to multiple anti-tumor drugs. Together, our integrative analysis elucidated the squamous subtype-specific regulatory mechanism, and identified master regulatory miRNAs and their downstream genes, which are potential prognostic and predictive biomarkers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quan Yuan ◽  
Zhihui Tian ◽  
Weiwei Lv ◽  
Weiwei Huang ◽  
Xiaolin Sun ◽  
...  

AbstractTo check if it is possible for crayfish to reduce the weed biomass in a paddy field, we hypothesised that crayfish can feed on common weeds in a paddy field. The feeding ability of red swamp crayfish, Procambarus clarkii, males and females for 4 weeds, Ludwigia prostrata Roxb., Leptochloa chinensis (L.) Nees, Echinochloa crusgalli (L.) Beauv and Eclipta prostrata L., commonly found in rice–crayfish fields were evaluated using a quantitative feeding experiment and behaviour observation experiment. The results of the quantitative feeding and behaviour experiments were highly consistent. The P. clarkii gender and weed species had no interactive effects on survival rate, the daily feed intake (FI) and percentage of daily feed intake (PFI). The results of the quantitative feeding experiment showed that the FI and PFI values of both P. clarkii females and males were significantly higher in the P. clarkii feed group than in the weed treatment group. Both FI and PFI were significantly higher in the L. chinensis group than in the other treatment groups. The survival rate of P. clarkii was significantly lower in the E. crusgalli group than in the other treatment groups. The behaviour observation experiment showed that the feeding frequency and duration were in the order of L. chinensis > E. prostrata > L. prostrata > E. crusgalli. The results indicate that the P. clarkii specimens liked to eat L. chinensis (mean PFI was more than 2%), hardly fed on E. crusgalli.


Author(s):  
Charles A. Stirling

The lateral giant (LG) to motor giant (MoG) synapses in crayfish (Procambarus clarkii) abdominal ganglia are the classic electrotonic synapses. They have previously been described as having synaptic vesicles and as having them on both the pre- and postsynaptic sides of symmetrical synaptic junctions. This positioning of vesicles would make these very atypical synapses, but in the present work on the crayfish Astacus pallipes the motor giant has never been found to contain any type of vesicle at its synapses with the lateral giant fiber.The lateral to motor giant fiber synapses all occur on short branches off the main giant fibers. Closely associated with these giant fiber synapses are two small presynaptic nerves which make synaptic contact with both of the giant fibers and with their small branches.


2018 ◽  
Vol 27 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Qianjun Li ◽  
Gang Ma ◽  
Huimin Guo ◽  
Suhua Sun ◽  
Ying Xu ◽  
...  

Background & Aims: Down-regulation of the growth arrest specific transcript 5 (GAS5) (long non-coding RNA) is associated with cell proliferation of gastric cancer (GC) and a poor prognosis. We aimed to investigate whether the variant rs145204276 of GAS5 is associated with the prognosis of GC in the Chinese population, and to unveil the regulatory mechanism underlying the GAS5 expression in GC tissues.Method: 1,253 GC patients and 1,354 healthy controls were included. The frequency of the genotype del/del and the allele del of rs145204276 were compared between the patients and the controls and between different subgroups of patients classified by clinicopathological variables. The overall survival rate was analyzed according to the Kaplan-Meier method using the log-rank test.Results: The frequency of genotype del/del was significantly lower in patients than in the controls (7.0% vs. 9.1%, p = 0.001). Kaplan-Meier analysis showed that genotype del/del was significantly associated with a higher survival rate (p = 0.01). Patients with late tumor stage were found to have a significantly lower rate of genotype del/del than those with an early tumor stage (4.9% vs. 8.8%, p = 0.01). Patients with UICC III and IV were found to have a significantly lower rate of genotype del/del than those with UICC I and II (5.3% vs. 8.1%, p = 0.02).Conclusion: The variant rs145204276 of GAS5 is associated with the development and prognosis of GC. The allele del of rs145204276 is associated with a remarkably lower incidence of cancer progression and metastasis.


Sign in / Sign up

Export Citation Format

Share Document