A large-scale whole-genome sequencing analysis reveals false positives of bacterial essential genes

Author(s):  
Yuanhao Li ◽  
Bo Jiang ◽  
Weijun Dai
2018 ◽  
Author(s):  
Xu Tang ◽  
Guanqing Liu ◽  
Jianping Zhou ◽  
Qiurong Ren ◽  
Qi You ◽  
...  

Targeting specificity has been an essential issue for applying genome editing systems in functional genomics, precise medicine and plant breeding. Understanding the scope of off-target mutations in Cas9 or Cpf1-edited crops is critical for research and regulation. In plants, only limited studies had used whole-genome sequencing (WGS) to test off-target effects of Cas9. However, the cause of numerous discovered mutations is still controversial. Furthermore, WGS based off-target analysis of Cpf1 has not been reported in any higher organism to date. Here, we conducted a WGS analysis of 34 plants edited by Cas9 and 15 plants edited by Cpf1 in T0 and T1 generations along with 20 diverse control plants in rice, a major food crop with a genome size of ~380 Mb. The sequencing depth ranged from 45X to 105X with reads mapping rate above 96%. Our results clearly show that most mutations in edited plants were created by tissue culture process, which caused ~102 to 148 single nucleotide variations (SNVs) and ~32 to 83 insertions/deletions (indels) per plant. Among 12 Cas9 single guide RNAs (sgRNAs) and 3 Cpf1 CRISPR RNAs (crRNAs) assessed by WGS, only one Cas9 sgRNA resulted in off-target mutations in T0 lines at sites predicted by computer programs. Moreover, we cannot find evidence for bona fide off-target mutations due to continued expression of Cas9 or Cpf1 with guide RNAs in T1 generation. Taken together, our comprehensive and rigorous analysis of WGS big data across multiple sample types suggests both Cas9 and Cpf1 nucleases are very specific in generating targeted DNA modifications and off-targeting can be avoided by designing guide RNAs with high specificity.


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 146-146
Author(s):  
D. M. Bickhart ◽  
L. Xu ◽  
J. L. Hutchison ◽  
J. B. Cole ◽  
D. J. Null ◽  
...  

2019 ◽  
Author(s):  
Andrea Sanchini ◽  
Christine Jandrasits ◽  
Julius Tembrockhaus ◽  
Thomas Andreas Kohl ◽  
Christian Utpatel ◽  
...  

AbstractIntroductionImproving the surveillance of tuberculosis (TB) is especially important for multidrug-resistant (MDR) and extensively drug-resistant (XDR)-TB. The large amount of publicly available whole-genome sequencing (WGS) data for TB gives us the chance to re-use data and to perform additional analysis at a large scale.AimWe assessed the usefulness of raw WGS data of global MDR/XDR-TB isolates available from public repositories to improve TB surveillance.MethodsWe extracted raw WGS data and the related metadata of Mycobacterium tuberculosis isolates available from the Sequence Read Archive. We compared this public dataset with WGS data and metadata of 131 MDR- and XDR-TB isolates from Germany in 2012-2013.ResultsWe aggregated a dataset that includes 1,081 MDR and 250 XDR isolates among which we identified 133 molecular clusters. In 16 clusters, the isolates were from at least two different countries. For example, cluster2 included 56 MDR/XDR isolates from Moldova, Georgia, and Germany. By comparing the WGS data from Germany and the public dataset, we found that 11 clusters contained at least one isolate from Germany and at least one isolate from another country. We could, therefore, connect TB cases despite missing epidemiological information.ConclusionWe demonstrated the added value of using WGS raw data from public repositories to contribute to TB surveillance. By comparing the German and the public dataset, we identified potential international transmission events. Thus, using this approach might support the interpretation of national surveillance results in an international context.


Sign in / Sign up

Export Citation Format

Share Document