Resistance response to Arenicin derivatives in Escherichia coli

Author(s):  
Zhenlong Wang ◽  
Na Yang ◽  
Da Teng ◽  
Ya Hao ◽  
Ting Li ◽  
...  
1999 ◽  
Vol 62 (3) ◽  
pp. 211-218 ◽  
Author(s):  
ROBERT L. BUCHANAN ◽  
SHARON G. EDELSON

The effect of acidulant identity on the pH-dependent stationary-phase acid resistance response of enterohemorrhagic Escherichia coli was studied. Nine strains of E. coli (seven O157:H7, one O111:H-, and one biotype 1 reference strain) were cultured individually for 18 h at 37°C in tryptic soy broth (TSB) plus 1% dextrose and in TSB without dextrose to yield acid resistance induced and noninduced stationary-phase cells, respectively. These cultures were then inoculated into brain heart infusion broth (BHI) supplemented with 0.5% citric, malic, lactic, or acetic acid and adjusted to pH 3.0 with HCl. The BHI tubes were incubated at 37°C for up to 7 h and samples were removed after 0, 2, 5, and 7 h and plated for counting CFU on BHI agar and MacConkey agar (MA). The results were compared to data previously obtained with HCl only. Acid resistance varied substantially among the isolates, being dependent on the strain, the acidulant, and the induction of pH-dependent acid resistance. Hydrochloric acid was consistently the least damaging to cells; lactic acid was the most detrimental. The relative activity of the other acids was strain dependent. Inducing pH-dependent acid resistance increased the already substantial acid tolerance of stationary-phase E. coli. The extent of injury also varied with acid and strain, with as much as a 5-log-cycle differential between BHI agar and MA CFU counts. The accurate determination of the survival of enterohemorrhagic E. coli in acidic foods must take into account the biological variability of the microorganism with respect to its acid resistance and its ability to enhance survival through the induction of physiological stress responses.


Food Research ◽  
2020 ◽  
Vol 4 (5) ◽  
pp. 1785-1793
Author(s):  
D.A. Salako ◽  
P.N. Trang ◽  
N.C. Ha ◽  
T. Miyamoto ◽  
T.T.A. Ngoc

Total of 261 samples of fish and environmental samples (i.e. wash water, swabs of hand/ gloves of workers, fish contact surfaces i.e. knives, cutting boards and working tables) were collected from two Pangasius processing factories (PPF1 and PPF2). A total of seventy-one (71) isolates of Escherichia coli were selected to study the prevalence of antibiotics resistance using disk agar diffusion method. Overall, it was determined that 61% (22/36) of PPF1 isolates were resistant except to colistin while 68.57% (24/35) of PPF2 isolates were resistant except kanamycin. High resistance was against ampicillin in both PPF1 and PPF2 isolates (47.22% and 42.86%), followed by cefotaxime (33.33% and 40%) respectively. Varying resistance response to all other tested antibiotics such as streptomycin, meropenem, tetracycline, sulfamethoxazole/trimethoprim and nalidixic acid was also observed among the E. coli isolates from both factories. About 50% of the multidrug resistant (3-9 antibiotics) among PPF1 were observed whereas there were 45.83% multi-drug resistant (3-7 antibiotics) among PPF2 isolates. The result from this study reflected that there was a prevalence of multi-drug resistance of E. coli isolated during the processing of Pangasius at the studied factories. Therefore, there is a need for an effective risk management assessment models and management plans from stakeholders involved in the Pangasius value chain (i.e. farmers, processors and government) to ensure the food safety of production chain


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document