scholarly journals Cellular sources of TSPO expression in healthy and diseased brain

Author(s):  
Erik Nutma ◽  
Kelly Ceyzériat ◽  
Sandra Amor ◽  
Stergios Tsartsalis ◽  
Philippe Millet ◽  
...  

AbstractThe 18 kDa translocator protein (TSPO) is a highly conserved protein located in the outer mitochondrial membrane. TSPO binding, as measured with positron emission tomography (PET), is considered an in vivo marker of neuroinflammation. Indeed, TSPO expression is altered in neurodegenerative, neuroinflammatory, and neuropsychiatric diseases. In PET studies, the TSPO signal is often viewed as a marker of microglial cell activity. However, there is little evidence in support of a microglia-specific TSPO expression. This review describes the cellular sources and functions of TSPO in animal models of disease and human studies, in health, and in central nervous system diseases. A discussion of methods of analysis and of quantification of TSPO is also presented. Overall, it appears that the alterations of TSPO binding, their cellular underpinnings, and the functional significance of such alterations depend on many factors, notably the pathology or the animal model under study, the disease stage, and the involved brain regions. Thus, further studies are needed to fully determine how changes in TSPO binding occur at the cellular level with the ultimate goal of revealing potential therapeutic pathways.

2021 ◽  
pp. 0271678X2199245
Author(s):  
Bin Ji ◽  
Maiko Ono ◽  
Tomoteru Yamasaki ◽  
Masayuki Fujinaga ◽  
Ming-Rong Zhang ◽  
...  

A substantial and constitutive expression of translocator protein (TSPO) in cerebral blood vessels hampers the sensitive detection of neuroinflammation characterized by greatly induced TSPO expression in activated glia. Here, we conducted in vivo positron emission tomography (PET) and in vitro autoradiographic imaging of normal and TSPO-deficient mouse brains to compare the binding properties of 18F-FEBMP, a relatively novel TSPO radioligand developed for human studies based on its insensitivity to a common polymorphism, with 11C-PK11195, as well as other commonly used TSPO radioligands including 11C-PBR28, 11C-Ac5216 and 18F-FEDAA1106. TSPO in cerebral vessels of normal mice was found to provide a major binding site for 11C-PK11195, 11C-PBR28 and 18F-FEDAA1106, in contrast to no overt specific binding of 18F-FEBMP and 11C-Ac5216 to this vascular component. In addition, 18F-FEBMP yielded PET images of microglial TSPO with a higher contrast than 11C-PK11195 in a tau transgenic mouse modeling Alzheimer’s disease (AD) and allied neurodegenerative tauopathies. Moreover, TSPO expression examined by immunoblotting was significantly increased in AD brains compared with healthy controls, and was well correlated with the autoradiographic binding of 18F-FEBMP but not 11C-PK11195. Our findings support the potential advantage of comparatively glial TSPO-selective radioligands such as 18F-FEBMP for PET imaging of inflammatory glial cells.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Klaudia A. Cybulska ◽  
Vera Bloemers ◽  
Lars R. Perk ◽  
Peter Laverman

Abstract Background The translocator protein 18 kDa is recognised as an important biomarker for neuroinflammation due to its soaring expression in microglia. This process is common for various neurological disorders. DPA-714 is a potent TSPO-specific ligand which found its use in Positron Emission Tomography following substitution of fluorine-19 with fluorine-18, a positron-emitting radionuclide. [18F]DPA-714 enables visualisation of inflammatory processes in vivo non-invasively. Radiolabelling of this tracer is well described in literature, including validation for clinical use. Here, we report significant enhancements to the process which resulted in the design of a fully GMP-compliant robust synthesis of [18F]DPA-714 on a popular cassette-based system, Trasis AllinOne, boosting reliability, throughput, and introducing a significant degree of simplicity. Results [18F]DPA-714 was synthesised using the classic nucleophilic aliphatic substitution on a good leaving group, tosylate, with [18F]fluoride using tetraethylammonium bicarbonate in acetonitrile at 100∘C. The process was fully automated on a Trasis AllinOne synthesiser using an in-house designed cassette and sequence. With a relatively small precursor load of 4 mg, [18F]DPA-714 was obtained with consistently high radiochemical yields of 55-71% (n=6) and molar activities of 117-350 GBq/µmol at end of synthesis. With a single production batch, starting with 31-42 GBq of [18F]fluoride, between 13-20 GBq of the tracer can be produced, enabling multi-centre studies. Conclusion To the best of our knowledge, the process presented herein is the most efficient [18F]DPA-714 synthesis, with advantageous GMP compliance. The use of a Trasis AllinOne synthesiser increases reliability and allows rapid training of production staff.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sébastien Goutal ◽  
Martine Guillermier ◽  
Guillaume Becker ◽  
Mylène Gaudin ◽  
Yann Bramoullé ◽  
...  

Abstract Background Positron Emission Tomography (PET) imaging of the Synaptic Vesicle glycoprotein (SV) 2A is a new tool to quantify synaptic density. [18F]UCB-H was one of the first promising SV2A-ligands to be labelled and used in vivo in rodent and human, while limited information on its pharmacokinetic properties is available in the non-human primate. Here, we evaluate the reliability of the three most commonly used modelling approaches for [18F]UCB-H in the non-human cynomolgus primate, adding the coupled fit of the non-displaceable distribution volume (VND) as an alternative approach to improve unstable fit. The results are discussed in the light of the current state of SV2A PET ligands. Results [18F]UCB-H pharmacokinetic data was optimally fitted with a two-compartment model (2TCM), although the model did not always converge (large total volume of distribution (VT) or large uncertainty of the estimate). 2TCM with coupled fit K1/k2 across brain regions stabilized the quantification, and confirmed a lower specific signal of [18F]UCB-H compared to the newest SV2A-ligands. However, the measures of VND and the influx parameter (K1) are similar to what has been reported for other SV2A ligands. These data were reinforced by displacement studies using [19F]UCB-H, demonstrating only 50% displacement of the total [18F]UCB-H signal at maximal occupancy of SV2A. As previously demonstrated in clinical studies, the graphical method of Logan provided a more robust estimate of VT with only a small bias compared to 2TCM. Conclusions Modeling issues with a 2TCM due to a slow component have previously been reported for other SV2A ligands with low specific binding, or after blocking of specific binding. As all SV2A ligands share chemical structural similarities, we hypothesize that this slow binding component is common for all SV2A ligands, but only hampers quantification when specific binding is low.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
F. Mattner ◽  
M. Quinlivan ◽  
I. Greguric ◽  
T. Pham ◽  
X. Liu ◽  
...  

The high affinity translocator protein (TSPO) ligand 6-chloro-2-(4′-iodophenyl)-3-(N,N-methylethyl)imidazo[1,2-a]pyridine-3-acetamide (CLINME) was radiolabelled with iodine-123 and assessed for its sensitivity for the TSPO in rodents. Moreover neuroinflammatory changes on a unilateral excitotoxic lesion rat model were detected using SPECT imaging. [123I]-CLINME was prepared in 70–80% radiochemical yield. The uptake of [123I]-CLINME was evaluated in rats by biodistribution, competition, and metabolite studies. The unilateral excitotoxic lesion was performed by injection ofα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid unilaterally into the striatum. The striatum lesion was confirmed and correlated with TSPO expression in astrocytes and activated microglia by immunohistochemistry and autoradiography.In vivostudies with [123I]-CLINME indicated a biodistribution pattern consistent with TPSO distribution and the competition studies with PK11195 and Ro 5-4864 showed that [123I]-CLINME is selective for this site. The metabolite study showed that the extractable radioactivity was unchanged [123I]-CLINME in organs which expresses TSPO. SPECT/CT imaging on the unilateral excitotoxic lesion indicated that the mean ratio uptake in striatum (lesion : nonlesion) was 2.2. Moreover, TSPO changes observed by SPECT imaging were confirmed by immunofluorescence, immunochemistry, and autoradiography. These results indicated that [123I]-CLINME is a promising candidate for the quantification and visualization of TPSO expression in activated astroglia using SPECT.


2021 ◽  
pp. 0271678X2110477
Author(s):  
Laura Michiels ◽  
Nathalie Mertens ◽  
Liselot Thijs ◽  
Ahmed Radwan ◽  
Stefan Sunaert ◽  
...  

Functional alterations after ischemic stroke have been described with Magnetic Resonance Imaging (MRI) and perfusion Positron Emission Tomography (PET), but no data on in vivo synaptic changes exist. Recently, imaging of synaptic density became available by targeting synaptic vesicle protein 2 A, a protein ubiquitously expressed in all presynaptic nerve terminals. We hypothesized that in subacute ischemic stroke loss of synaptic density can be evaluated with 11C-UCB-J PET in the ischemic tissue and that alterations in synaptic density can be present in brain regions beyond the ischemic core. We recruited ischemic stroke patients to undergo 11C-UCB-J PET/MR imaging 21 ± 8 days after stroke onset to investigate regional 11C-UCB-J SUVR (standardized uptake value ratio). There was a decrease (but residual signal) of 11C-UCB-J SUVR within the lesion of 16 stroke patients compared to 40 healthy controls (ratiolesion/controls = 0.67 ± 0.28, p = 0.00023). Moreover, 11C-UCB-J SUVR was lower in the non-lesioned tissue of the affected hemisphere compared to the unaffected hemisphere (ΔSUVR = −0.17, p = 0.0035). The contralesional cerebellar hemisphere showed a lower 11C-UCB-J SUVR compared to the ipsilesional cerebellar hemisphere (ΔSUVR = −0.14, p = 0.0048). In 8 out of 16 patients, the asymmetry index suggested crossed cerebellar diaschisis. Future research is required to longitudinally study these changes in synaptic density and their association with outcome.


2019 ◽  
Vol 127 (2) ◽  
pp. 546-558
Author(s):  
Laurent Bitker ◽  
Nicolas Costes ◽  
Didier Le Bars ◽  
Franck Lavenne ◽  
Maciej Orkisz ◽  
...  

Macrophagic lung infiltration is pivotal in the development of lung biotrauma because of ventilation-induced lung injury (VILI). We assessed the performance of [11C](R)-PK11195, a positron emission tomography (PET) radiotracer binding the translocator protein, to quantify macrophage lung recruitment during experimental VILI. Pigs ( n = 6) were mechanically ventilated under general anesthesia, using protective ventilation settings (baseline). Experimental VILI was performed by titrating tidal volume to reach a transpulmonary end-inspiratory pressure (∆PL) of 35–40 cmH2O. We acquired PET/computed tomography (CT) lung images at baseline and after 4 h of VILI. Lung macrophages were quantified in vivo by the standardized uptake value (SUV) of [11C](R)-PK11195 measured in PET on the whole lung and in six lung regions and ex vivo on lung pathology at the end of experiment. Lung mechanics were extracted from CT images to assess their association with the PET signal. ∆PL increased from 9 ± 1 cmH2O under protective ventilation, to 36 ± 6 cmH2O during experimental VILI. Compared with baseline, whole-lung [11C](R)-PK11195 SUV significantly increased from 1.8 ± 0.5 to 2.9 ± 0.5 after experimental VILI. Regional [11C](R)-PK11195 SUV was positively associated with the magnitude of macrophage recruitment in pathology ( P = 0.03). Compared with baseline, whole-lung CT-derived dynamic strain and tidal hyperinflation increased significantly after experimental VILI, from 0.6 ± 0 to 2.0 ± 0.4, and 1 ± 1 to 43 ± 19%, respectively. On multivariate analysis, both were significantly associated with regional [11C](R)-PK11195 SUV. [11C](R)-PK11195 lung uptake (a proxy of lung inflammation) was increased by experimental VILI and was associated with the magnitude of dynamic strain and tidal hyperinflation. NEW & NOTEWORTHY We assessed the performance of [11C](R)-PK11195, a translocator protein-specific positron emission tomography (PET) radiotracer, to quantify macrophage lung recruitment during experimental ventilation-induced lung injury (VILI). In this proof-of-concept study, we showed that the in vivo quantification of [11C](R)-PK11195 lung uptake in PET reflected the magnitude of macrophage lung recruitment after VILI. Furthermore, increased [11C](R)-PK11195 lung uptake was associated with harmful levels of dynamic strain and tidal hyperinflation applied to the lungs.


Synapse ◽  
2010 ◽  
Vol 64 (8) ◽  
pp. 649-653 ◽  
Author(s):  
Harushige Ozaki ◽  
Sami S. Zoghbi ◽  
Jinsoo Hong ◽  
Ajay Verma ◽  
Victor W. Pike ◽  
...  

2009 ◽  
Vol 30 (1) ◽  
pp. 230-241 ◽  
Author(s):  
Abraham Martín ◽  
Raphaël Boisgard ◽  
Benoit Thézé ◽  
Nadja Van Camp ◽  
Bertrand Kuhnast ◽  
...  

Focal cerebral ischemia leads to an inflammatory reaction involving an overexpression of the peripheral benzodiazepine receptor (PBR)/18-kDa translocator protein (TSPO) in the cerebral monocytic lineage (microglia and monocyte) and in astrocytes. Imaging of PBR/TSPO by positron emission tomography (PET) using radiolabeled ligands can document inflammatory processes induced by cerebral ischemia. We performed in vivo PET imaging with [18F]DPA-714 to determine the time course of PBR/TSPO expression over several days after induction of cerebral ischemia in rats. In vivo PET imaging showed significant increase in DPA ( N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide) uptake on the injured side compared with that in the contralateral area on days 7, 11, 15, and 21 after ischemia; the maximal binding value was reached 11 days after ischemia. In vitro autoradiography confirmed these in vivo results. In vivo and in vitro [18F]DPA-714 binding was displaced from the lesion by PK11195 and DPA-714. Immunohistochemistry showed increased PBR/TSPO expression, peaking at day 11 in cells expressing microglia/macrophage antigens in the ischemic area. At later times, a centripetal migration of astrocytes toward the lesion was observed, promoting the formation of an astrocytic scar. These results show that [18F]DPA-714 provides accurate quantitative information of the time course of PBR/TSPO expression in experimental stroke.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clément Delage ◽  
Nicolas Vignal ◽  
Coralie Guerin ◽  
Toufik Taib ◽  
Clément Barboteau ◽  
...  

AbstractTraumatic brain injury (TBI) leads to a deleterious neuroinflammation, originating from microglial activation. Monitoring microglial activation is an indispensable step to develop therapeutic strategies for TBI. In this study, we evaluated the use of the 18-kDa translocator protein (TSPO) in positron emission tomography (PET) and cellular analysis to monitor microglial activation in a mild TBI mouse model. TBI was induced on male Swiss mice. PET imaging analysis with [18F]FEPPA, a TSPO radiotracer, was performed at 1, 3 and 7 days post-TBI and flow cytometry analysis on brain at 1 and 3 days post-TBI. PET analysis showed no difference in TSPO expression between non-operated, sham-operated and TBI mice. Flow cytometry analysis demonstrated an increase in TSPO expression in ipsilateral brain 3 days post-TBI, especially in microglia, macrophages, lymphocytes and neutrophils. Moreover, microglia represent only 58.3% of TSPO+ cells in the brain. Our results raise the question of the use of TSPO radiotracer to monitor microglial activation after TBI. More broadly, flow cytometry results point the lack of specificity of TSPO for microglia and imply that microglia contribute to the overall increase in TSPO in the brain after TBI, but is not its only contributor.


Sign in / Sign up

Export Citation Format

Share Document