scholarly journals Radiosynthesis,In VivoBiological Evaluation, and Imaging of Brain Lesions with [123I]-CLINME, a New SPECT Tracer for the Translocator Protein

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
F. Mattner ◽  
M. Quinlivan ◽  
I. Greguric ◽  
T. Pham ◽  
X. Liu ◽  
...  

The high affinity translocator protein (TSPO) ligand 6-chloro-2-(4′-iodophenyl)-3-(N,N-methylethyl)imidazo[1,2-a]pyridine-3-acetamide (CLINME) was radiolabelled with iodine-123 and assessed for its sensitivity for the TSPO in rodents. Moreover neuroinflammatory changes on a unilateral excitotoxic lesion rat model were detected using SPECT imaging. [123I]-CLINME was prepared in 70–80% radiochemical yield. The uptake of [123I]-CLINME was evaluated in rats by biodistribution, competition, and metabolite studies. The unilateral excitotoxic lesion was performed by injection ofα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid unilaterally into the striatum. The striatum lesion was confirmed and correlated with TSPO expression in astrocytes and activated microglia by immunohistochemistry and autoradiography.In vivostudies with [123I]-CLINME indicated a biodistribution pattern consistent with TPSO distribution and the competition studies with PK11195 and Ro 5-4864 showed that [123I]-CLINME is selective for this site. The metabolite study showed that the extractable radioactivity was unchanged [123I]-CLINME in organs which expresses TSPO. SPECT/CT imaging on the unilateral excitotoxic lesion indicated that the mean ratio uptake in striatum (lesion : nonlesion) was 2.2. Moreover, TSPO changes observed by SPECT imaging were confirmed by immunofluorescence, immunochemistry, and autoradiography. These results indicated that [123I]-CLINME is a promising candidate for the quantification and visualization of TPSO expression in activated astroglia using SPECT.

Author(s):  
Erik Nutma ◽  
Kelly Ceyzériat ◽  
Sandra Amor ◽  
Stergios Tsartsalis ◽  
Philippe Millet ◽  
...  

AbstractThe 18 kDa translocator protein (TSPO) is a highly conserved protein located in the outer mitochondrial membrane. TSPO binding, as measured with positron emission tomography (PET), is considered an in vivo marker of neuroinflammation. Indeed, TSPO expression is altered in neurodegenerative, neuroinflammatory, and neuropsychiatric diseases. In PET studies, the TSPO signal is often viewed as a marker of microglial cell activity. However, there is little evidence in support of a microglia-specific TSPO expression. This review describes the cellular sources and functions of TSPO in animal models of disease and human studies, in health, and in central nervous system diseases. A discussion of methods of analysis and of quantification of TSPO is also presented. Overall, it appears that the alterations of TSPO binding, their cellular underpinnings, and the functional significance of such alterations depend on many factors, notably the pathology or the animal model under study, the disease stage, and the involved brain regions. Thus, further studies are needed to fully determine how changes in TSPO binding occur at the cellular level with the ultimate goal of revealing potential therapeutic pathways.


2016 ◽  
Vol 58 (6) ◽  
pp. 989-995 ◽  
Author(s):  
Ling Feng ◽  
Per Jensen ◽  
Gerda Thomsen ◽  
Agnete Dyssegaard ◽  
Claus Svarer ◽  
...  

2009 ◽  
Vol 30 (1) ◽  
pp. 230-241 ◽  
Author(s):  
Abraham Martín ◽  
Raphaël Boisgard ◽  
Benoit Thézé ◽  
Nadja Van Camp ◽  
Bertrand Kuhnast ◽  
...  

Focal cerebral ischemia leads to an inflammatory reaction involving an overexpression of the peripheral benzodiazepine receptor (PBR)/18-kDa translocator protein (TSPO) in the cerebral monocytic lineage (microglia and monocyte) and in astrocytes. Imaging of PBR/TSPO by positron emission tomography (PET) using radiolabeled ligands can document inflammatory processes induced by cerebral ischemia. We performed in vivo PET imaging with [18F]DPA-714 to determine the time course of PBR/TSPO expression over several days after induction of cerebral ischemia in rats. In vivo PET imaging showed significant increase in DPA ( N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide) uptake on the injured side compared with that in the contralateral area on days 7, 11, 15, and 21 after ischemia; the maximal binding value was reached 11 days after ischemia. In vitro autoradiography confirmed these in vivo results. In vivo and in vitro [18F]DPA-714 binding was displaced from the lesion by PK11195 and DPA-714. Immunohistochemistry showed increased PBR/TSPO expression, peaking at day 11 in cells expressing microglia/macrophage antigens in the ischemic area. At later times, a centripetal migration of astrocytes toward the lesion was observed, promoting the formation of an astrocytic scar. These results show that [18F]DPA-714 provides accurate quantitative information of the time course of PBR/TSPO expression in experimental stroke.


Author(s):  
Julia Schubert ◽  
Matteo Tonietto ◽  
Federico Turkheimer ◽  
Paolo Zanotti-Fregonara ◽  
Mattia Veronese

Abstract Purpose This technical note seeks to act as a practical guide for implementing a supervised clustering algorithm (SVCA) reference region approach and to explain the main strengths and limitations of the technique in the context of 18-kilodalton translocator protein (TSPO) positron emission tomography (PET) studies in experimental medicine. Background TSPO PET is the most widely used imaging technique for studying neuroinflammation in vivo in humans. Quantifying neuroinflammation with PET can be a challenging and invasive procedure, especially in frail patients, because it often requires blood sampling from an arterial catheter. A widely used alternative to arterial sampling is SVCA, which identifies the voxels with minimal specific binding in the PET images, thus extracting a pseudo-reference region for non-invasive quantification. Unlike other reference region approaches, SVCA does not require specification of an anatomical reference region a priori, which alleviates the limitation of TSPO contamination in anatomically-defined reference regions in individuals with underlying inflammatory processes. Furthermore, SVCA can be applied to any TSPO PET tracer across different neurological and neuropsychiatric conditions, providing noninvasivequantification of TSPO expression. Methods We provide an overview of the development of SVCA as well as step-by-step instructions for implementing SVCA with suggestions for specific settings. We review the literature on SVCAapplications using first- and second- generation TSPO PET tracers and discuss potential clinically relevant limitations and applications. Conclusions The correct implementation of SVCA can provide robust and reproducible estimates of brain TSPO expression. This review encourages the standardisation of SVCA methodology in TSPO PET analysis, ultimately aiming to improve replicability and comparability across study sites.


2002 ◽  
Vol 46 (2) ◽  
pp. 420-424 ◽  
Author(s):  
Kazuo Takahashi ◽  
Kazutaka Ohashi ◽  
Yurika Abe ◽  
Shuichi Mori ◽  
Koki Taniguchi ◽  
...  

ABSTRACT Antiviral activity of sulfated sialyl lipid (NMSO3) against human rotavirus (RV) was examined in vitro and in vivo. NMSO3 inhibited the replication of four major serotypes (G1 to G4) of human rotavirus with a low 50% effective concentration of 1 to 5 μg/ml and 50% cytotoxic concentration of 153 μg/ml when determined by plaque assays with MA104 cells. Exposure of NMSO3 to HCl (pH 2.0) for 30 min exhibited no loss of anti-RV activity. Time-of-addition experiments revealed that NMSO3 inhibited the adsorption of four serotypes of RV to MA104 cells. Furthermore, an assay of virus binding with radiolabeled RVs revealed that NMSO3 inhibited the binding of virus to MA104 cells, suggesting that NMSO3 may bind to VP4 and/or VP7. Prophylactic oral administration of NMSO3 (10 μg three times per day, 4 days) to five suckling mice starting 30 min before inoculation of MO strain (3 × 106 PFU/mouse) prevented the development of diarrhea. Four of five mice showed no stool or brown formed stool, and only one mouse showed brown soft stool, while water treatment caused watery diarrhea in all five mice. The mean titer of antibody to RV in mice which received NMSO3 at 10 μg three times per day for 4 days was significantly lower than that of untreated, infected mice. NMSO3 is a promising candidate for the prophylactic treatment of human RVs.


2020 ◽  
Vol 3 ◽  
Author(s):  
Cory Gerritsen ◽  
Yajur Iyengar ◽  
Tania DaSilva ◽  
Alex Koppel ◽  
Pablo Rusjan ◽  
...  

Abstract Personality has been correlated with differences in cytokine expression, an indicator of peripheral inflammation; however, the associations between personality and central markers of inflammation have never been investigated in vivo in humans. Microglia are the resident macrophages of the central nervous system, and the first responders to tissue damage and brain insult. Microglial activation is associated with elevated expression of translocator protein 18kDa (TSPO), which can be imaged with positron emission tomography (PET) to quantify immune activation in the human brain. This study aimed to investigate the association between personality and TSPO expression across the psychosis spectrum. A total of 61 high-resolution [18F]FEPPA PET scans were conducted in 28 individuals at clinical high risk (CHR) for psychosis, 19 First-Episode Psychosis (FEP), and 14 healthy volunteers (HVs), and analyzed using a two-tissue compartment model and plasma input function to obtain a total volume of distribution (VT) as an index of brain TSPO expression (controlling for the rs6971 TSPO polymorphism). Personality was assessed using the Revised NEO Personality Inventory (NEO-PI-R). We found TSPO expression to be specifically associated with neuroticism. A positive association between TSPO expression and neuroticism was found in HVs, in contrast to a nonsignificant, negative association in CHR and significant negative association in FEP. The TSPO-associated neuroticism trait indicates an unexplored connection between neuroimmune activation and personality that varies across the psychosis spectrum.


2009 ◽  
Vol 297 (1) ◽  
pp. F177-F190 ◽  
Author(s):  
Frederic Favreau ◽  
Ludivine Rossard ◽  
Keqiang Zhang ◽  
Thibault Desurmont ◽  
Emilie Manguy ◽  
...  

Translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, is an 18-kDa drug- and cholesterol-binding protein localized to the outer mitochondrial membrane and implicated in a variety of cell and mitochondrial functions. To determine the role of TSPO in ischemia-reperfusion injury (IRI), we used both in vivo and in vitro porcine models: an in vivo renal ischemia model where different conservation modalities were tested and an in vitro model where TSPO-transfected porcine proximal tubule LLC-PK1cells were exposed to hypoxia and oxidative stress. The expression of TSPO and its partners in steroidogenic cells, steroidogenic acute regulatory protein (StAR) and cytochrome P-450 side chain cleavage CYP11A1, as well as the impact of TSPO overexpression and exposure to TSPO ligands in vitro in hypoxia-ischemia conditions were investigated. Hypoxia induced caspase activation, reduction of ATP content, and LLC-PK1cell death. Transfection and overexpression of TSPO rescued the cells from the detrimental effects of hypoxia and reoxygenation. Moreover, TSPO overexpression was accompanied by a reduction of H2O2-induced necrosis. TSPO drug ligands did not affect TSPO-mediated functions. In vivo, TSPO expression was modulated by IRI and during regeneration particularly in proximal tubule cells, which do not express this protein at the basal level. Under the same conditions, StAR and CYP11A1 protein and gene expression was reduced without apparent relation to TSPO changes. Pregnenolone was identified and measured in the pig kidney. Pregnenolone synthesis was not affected by the experimental conditions used. Taken together, these results indicate that changes in TSPO expression in kidney regenerating tissue could be important for renal protection and maintenance of kidney function.


2021 ◽  
pp. 0271678X2199245
Author(s):  
Bin Ji ◽  
Maiko Ono ◽  
Tomoteru Yamasaki ◽  
Masayuki Fujinaga ◽  
Ming-Rong Zhang ◽  
...  

A substantial and constitutive expression of translocator protein (TSPO) in cerebral blood vessels hampers the sensitive detection of neuroinflammation characterized by greatly induced TSPO expression in activated glia. Here, we conducted in vivo positron emission tomography (PET) and in vitro autoradiographic imaging of normal and TSPO-deficient mouse brains to compare the binding properties of 18F-FEBMP, a relatively novel TSPO radioligand developed for human studies based on its insensitivity to a common polymorphism, with 11C-PK11195, as well as other commonly used TSPO radioligands including 11C-PBR28, 11C-Ac5216 and 18F-FEDAA1106. TSPO in cerebral vessels of normal mice was found to provide a major binding site for 11C-PK11195, 11C-PBR28 and 18F-FEDAA1106, in contrast to no overt specific binding of 18F-FEBMP and 11C-Ac5216 to this vascular component. In addition, 18F-FEBMP yielded PET images of microglial TSPO with a higher contrast than 11C-PK11195 in a tau transgenic mouse modeling Alzheimer’s disease (AD) and allied neurodegenerative tauopathies. Moreover, TSPO expression examined by immunoblotting was significantly increased in AD brains compared with healthy controls, and was well correlated with the autoradiographic binding of 18F-FEBMP but not 11C-PK11195. Our findings support the potential advantage of comparatively glial TSPO-selective radioligands such as 18F-FEBMP for PET imaging of inflammatory glial cells.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S392-S392
Author(s):  
Nadja Van Camp ◽  
Koen Van Laere ◽  
Ruth Vreys ◽  
Marleen Verhoye ◽  
Erwin Lauwers ◽  
...  

1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


Sign in / Sign up

Export Citation Format

Share Document