Comprehensive characterization of tumor immune landscape following oncolytic virotherapy by single-cell RNA sequencing

Author(s):  
Divya Ravirala ◽  
Guangsheng Pei ◽  
Zhongming Zhao ◽  
Xiaoliu Zhang
2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Andrew Donson ◽  
Kent Riemondy ◽  
Sujatha Venkataraman ◽  
Ahmed Gilani ◽  
Bridget Sanford ◽  
...  

Abstract We explored cellular heterogeneity in medulloblastoma using single-cell RNA sequencing (scRNAseq), immunohistochemistry and deconvolution of bulk transcriptomic data. Over 45,000 cells from 31 patients from all main subgroups of medulloblastoma (2 WNT, 10 SHH, 9 GP3, 11 GP4 and 1 GP3/4) were clustered using Harmony alignment to identify conserved subpopulations. Each subgroup contained subpopulations exhibiting mitotic, undifferentiated and neuronal differentiated transcript profiles, corroborating other recent medulloblastoma scRNAseq studies. The magnitude of our present study builds on the findings of existing studies, providing further characterization of conserved neoplastic subpopulations, including identification of a photoreceptor-differentiated subpopulation that was predominantly, but not exclusively, found in GP3 medulloblastoma. Deconvolution of MAGIC transcriptomic cohort data showed that neoplastic subpopulations are associated with major and minor subgroup subdivisions, for example, photoreceptor subpopulation cells are more abundant in GP3-alpha. In both GP3 and GP4, higher proportions of undifferentiated subpopulations is associated with shorter survival and conversely, differentiated subpopulation is associated with longer survival. This scRNAseq dataset also afforded unique insights into the immune landscape of medulloblastoma, and revealed an M2-polarized myeloid subpopulation that was restricted to SHH medulloblastoma. Additionally, we performed scRNAseq on 16,000 cells from genetically engineered mouse (GEM) models of GP3 and SHH medulloblastoma. These models showed a level of fidelity with corresponding human subgroup-specific neoplastic and immune subpopulations. Collectively, our findings advance our understanding of the neoplastic and immune landscape of the main medulloblastoma subgroups in both humans and GEM models.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2460 ◽  
Author(s):  
Masafumi Horie ◽  
Alessandra Castaldi ◽  
Mitsuhiro Sunohara ◽  
Hongjun Wang ◽  
Yanbin Ji ◽  
...  

Molecular and functional characterization of alveolar epithelial type I (AT1) cells has been challenging due to difficulty in isolating sufficient numbers of viable cells. Here we performed single-cell RNA-sequencing (scRNA-seq) of tdTomato+ cells from lungs of AT1 cell-specific Aqp5-Cre-IRES-DsRed (ACID);R26tdTomato reporter mice. Following enzymatic digestion, CD31-CD45-E-cadherin+tdTomato+ cells were subjected to fluorescence-activated cell sorting (FACS) followed by scRNA-seq. Cell identity was confirmed by immunofluorescence using cell type-specific antibodies. After quality control, 92 cells were analyzed. Most cells expressed ‘conventional’ AT1 cell markers (Aqp5, Pdpn, Hopx, Ager), with heterogeneous expression within this population. The remaining cells expressed AT2, club, basal or ciliated cell markers. Integration with public datasets identified three robust AT1 cell- and lung-enriched genes, Ager, Rtkn2 and Gprc5a, that were conserved across species. GPRC5A co-localized with HOPX and was not expressed in AT2 or airway cells in mouse, rat and human lung. GPRC5A co-localized with AQP5 but not pro-SPC or CC10 in mouse lung epithelial cell cytospins. We enriched mouse AT1 cells to perform molecular phenotyping using scRNA-seq. Further characterization of putative AT1 cell-enriched genes revealed GPRC5A as a conserved AT1 cell surface marker that may be useful for AT1 cell isolation.


2019 ◽  
Author(s):  
Aziz Al’Khafaji ◽  
Catherine Gutierrez ◽  
Eric Brenner ◽  
Russell Durrett ◽  
Kaitlyn E. Johnson ◽  
...  

AbstractThe remarkable evolutionary capacity of cancer is a major challenge to current therapeutic efforts. Fueling this evolution is its vast clonal heterogeneity and ability to adapt to diverse selective pressures. Although the genetic and transcriptional mechanisms underlying these responses have been independently evaluated, the ability to couple genetic alterations present within individual clones to their respective transcriptional or functional outputs has been lacking in the field. To this end, we developed a high-complexity expressed barcode library that integrates DNA barcoding with single-cell RNA sequencing through use of the CROP-seq sgRNA expression/capture system, and which is compatible with the COLBERT clonal isolation workflow for subsequent genomic and epigenomic characterization of specific clones of interest. We applied this approach to study chronic lymphocytic leukemia (CLL), a mature B cell malignancy notable for its genetic and transcriptomic heterogeneity and variable disease course. Here, we demonstrate the clonal composition and gene expression states of HG3, a CLL cell line harboring the common alteration del(13q), in response to front-line cytotoxic therapy of fludarabine and mafosfamide (an analog of the clinically used cyclophosphamide). Analysis of clonal abundance and clonally-resolved single-cell RNA sequencing revealed that only a small fraction of clones consistently survived therapy. These rare highly drug tolerant clones comprise 94% of the post-treatment population and share a stable, pre-existing gene expression state characterized by upregulation of CXCR4 and WNT signaling and a number of DNA damage and cell survival genes. Taken together, these data demonstrate at unprecedented resolution the diverse clonal characteristics and therapeutic responses of a heterogeneous cancer cell population. Further, this approach provides a template for the high-resolution study of thousands of clones and the respective gene expression states underlying their response to therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
David Brown ◽  
Michael Altermatt ◽  
Tatyana Dobreva ◽  
Sisi Chen ◽  
Alexander Wang ◽  
...  

Engineered variants of recombinant adeno-associated viruses (rAAVs) are being developed rapidly to meet the need for gene-therapy delivery vehicles with particular cell-type and tissue tropisms. While high-throughput AAV engineering and selection methods have generated numerous variants, subsequent tropism and response characterization have remained low throughput and lack resolution across the many relevant cell and tissue types. To fully leverage the output of these large screening paradigms across multiple targets, we have developed an experimental and computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo characterization of barcoded rAAV pools at high resolution. Using this platform, we have both corroborated previously reported viral tropisms and discovered unidentified AAV capsid targeting biases. As expected, we observed that the tropism profile of AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes when compared with AAV-PHP.eB. Transcriptomic analysis revealed that this neuronal bias is due mainly to increased targeting efficiency for glutamatergic neurons, which we confirmed by RNA fluorescence in situ hybridization. We further uncovered cell subtype tropisms of AAV variants in vascular and glial cells, such as low transduction of pericytes and Myoc+ astrocytes. Additionally, we have observed cell-type-specific transitory responses to systemic AAV-PHP.eB administration, such as upregulation of genes involved in p53 signaling in endothelial cells three days post-injection, which return to control levels by day twenty-five. The presented experimental and computational approaches for parallel characterization of AAV tropism will facilitate the advancement of safe and precise gene delivery vehicles, and showcase the power of understanding responses to gene therapies at the single-cell level.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 800-800
Author(s):  
Jens G Lohr ◽  
Sora Kim ◽  
Joshua Gould ◽  
Birgit Knoechel ◽  
Yotam Drier ◽  
...  

Abstract Continuous genomic evolution has been a major limitation to curative treatment of multiple myeloma (MM). Frequent monitoring of the genetic heterogeneity in MM from blood, rather than serial bone marrow (BM) biopsies, would therefore be desirable. We hypothesized that genomic characterization of circulating MM cells (CMMCs) recapitulates the genetics of MM in BM biopsies, enables MM classification, and is feasible in the majority of MM patients with active disease. Methods: To test these hypotheses, we developed a method to enrich, purify and isolate single CMMCs with a sensitivity of at least 1:10(5). We then performed DNA- and RNA-sequencing of single CMMCs and compared them to single BM-derived MM cells. We determined CMMC numbers in 24 randomly selected MM patient samples and compared them to numbers of circulating MM cells obtained by flow cytometry. We performed single-cell whole genome amplification of single cells from 10 MM patients, and targeted sequencing of the 35 most recurrently mutated loci in MM. A total of 568 single primary cells representing CMMCs, BM MM cells, CD19+ B lymphocytes, CD45+CD138- WBC from these patients were subjected to DNA-sequencing. By processing 80 single cells from four MM cell lines with known mutations we determined the mean sensitivity of mutation detection in single cells to be 93 ± 9%. In addition to DNA-sequencing we also isolated 57 single MM cells from the BM and peripheral blood of two MM patients and performed whole transcriptome single cell RNA-sequencing. Results: In 24 randomly selected MM patient samples we detected >12 CMMCs per 1ml of blood in all 24 patients. In comparison, by flow cytometry, we detected ≥10 CMMCs per 10(5) white blood cells in 10/24 cases (42%), ≥1 CMMC but ≤ 10 CMMCs in 13/24 cases (54%), and < 1 CTCs in 1/24 patients (4%). Mutational analysis of 35 recurrently mutated loci in 335 high quality single MM cells from the blood and BM of 10 patients, including one MGUS patient, revealed the presence of a total of 12 mutations (in KRAS, NRAS, BRAF, IRF4 and TP53). All targeted mutations that were detected by clinical-grade genotyping of bulk BM were also detected in single cell analysis of CMMCs. While in most patients, the fraction of mutated single cells was similar between blood and BM, in three patients, the proportion of MM cells harboring TP53 R273C, BRAF G469A and NRAS G13D mutations was significantly higher in the blood than in the BM, suggesting a different clonal composition. We developed an analytical model to predict whether a genetic locus underwent loss of heterozygosity, using the distribution of known allelic fractions of previously described mutations in MM cell lines as a benchmark. In two patients who simultaneously harbored two mutations, we predicted a BRAF G469E and a KRAS G12C mutation to be heterozygous, whereas the loci harboring a TP53 R273C and a TP53 R280T mutation were predicted to be associated with LOH with high statistical confidence. Whole transcriptome single cell RNA-sequencing of 57 MM cells from the BM and peripheral blood of two patients showed >3,700 transcripts per cell. Single-cell RNA-sequencing allowed for a clear distinction between normal plasma cells and MM cells, either based on analysis of CD45, CD27, and CD56 alone, or by unsupervised hierarchical clustering of detected transcripts in single cells. In addition, single cell CMMC expression analysis could be used to infer the existence of key MM chromosomal translocations. For example, CCND1 and CCND3 were highly upregulated in single MM cells from the blood and BM of two patients, whose MM was found by FISH analysis to harbor a t(11;14) and a t(6;14) translocation, respectively. Conclusion: We demonstrate that extensive genomic characterization of MM is feasible from very small numbers of CMMCs with single cell resolution. Interrogation of single CMMCs faithfully reproduces the pattern of somatic mutations present in MM in the BM, identifies actionable oncogenes, and reveals if somatic mutated loci underwent loss of heterozygosity. Single CMMCs also reveal mutations that are not detectable in the BM either by single cell sequencing or clinical grade bulk sequencing. Single cell RNA-sequencing of CMMCs provides robust transcriptomic profiling, allowing for class-differentiation and inference of translocations in MM patients. Disclosures Raje: Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Merck: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Eli Lilly: Research Funding.


2021 ◽  
Vol 13 ◽  
Author(s):  
Fanghong Shao ◽  
Meiting Wang ◽  
Qi Guo ◽  
Bowen Zhang ◽  
Xiangting Wang

The detailed characteristics of neuronal cell populations in Alzheimer’s disease (AD) using single-cell RNA sequencing have not been fully elucidated. To explore the characterization of neuronal cell populations in AD, this study utilized the publicly available single-nucleus RNA-sequencing datasets in the transgenic model of 5X familial Alzheimer’s disease (5XFAD) and wild-type mice to reveal an AD-associated excitatory neuron population (C3:Ex.Neuron). The relative abundance of C3:Ex.Neuron increased at 1.5 months and peaked at 4.7 months in AD mice. Functional pathways analyses showed that the pathways positively related to neurodegenerative disease progression were downregulated in the C3:Ex.Neuron at 1.5 months in AD mice. Based on the differentially expressed genes among the C3:Ex.Neuron, four subtypes (C3.1–4) were identified, which exhibited distinct abundance regulatory patterns during the development of AD. Among these subtypes, the C3.1 neurons [marked by netrin G1 (Ntng1)] exhibited a similar regulatory pattern as the C3:Ex.Neuron in abundance during the development of AD. In addition, our gene set variation analysis (GSEA) showed that the C3.1 neurons, instead of other subtypes of the C3:Ex.Neuron, possessed downregulated AD pathways at an early stage (1.5 months) of AD mice. Collectively, our results identified a previously unidentified subset of excitatory neurons and provide a potential application of these neurons to modulate the disease susceptibility.


2021 ◽  
Author(s):  
Xuanwen Bao ◽  
Qiong Li ◽  
Jinzhang Chen ◽  
Diyu Chen ◽  
Chanqi Ye ◽  
...  

Abstract Intrahepatic cholangiocarcinoma (ICC) is a relatively rare but highly aggressive tumour type that responds poorly to chemotherapy and immunotherapy. Comprehensive molecular characterization of ICC is essential for the development of novel therapeutics. We performed a comprehensive multi-omics analysis of ICC via proteomic, whole-exon sequencing (WES) and single-cell RNA sequencing (scRNA-seq). We identified three molecular subtypes with deteriorating prognosis in ICC: chromatin remodelling, metabolism, and inflammation. The inflammation subtype was associated with a poor prognosis. Our random forest algorithm revealed that the mutation of KMT2D frequently occurred in the metabolism subtype and were associated with lower inflammatory activity. scRNA-seq further identified a novel APOE+C1QB+ macrophage subtype, which showed the capacity of promoting the inflammation subtype and contributing to a poor prognosis in ICC. Taking together, with a single-cell transcriptome-assisted multi-omics analysis, we identified novel molecular subtypes of ICC and valided APOE+C1QB+ TAMs as potential novel immunotherapy targets against ICC.


2020 ◽  
Author(s):  
Hua Yang ◽  
Jianyu Ma ◽  
Zhen Wan ◽  
Qi Wang ◽  
Zhibo Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document