Measurement accuracy of foramen of vesalius for safe percutaneous techniques using computer-assisted three-dimensional landmarks

2013 ◽  
Vol 36 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Mehmet Asim Ozer ◽  
Figen Govsa
2011 ◽  
Vol 81 (3) ◽  
pp. 375-382 ◽  
Author(s):  
Huseyin Olmez ◽  
Serkan Gorgulu ◽  
Erol Akin ◽  
Ali Osman Bengi ◽  
İbrahim Tekdemir ◽  
...  

Author(s):  
A.M. Jones ◽  
A. Max Fiskin

If the tilt of a specimen can be varied either by the strategy of observing identical particles orientated randomly or by use of a eucentric goniometer stage, three dimensional reconstruction procedures are available (l). If the specimens, such as small protein aggregates, lack periodicity, direct space methods compete favorably in ease of implementation with reconstruction by the Fourier (transform) space approach (2). Regardless of method, reconstruction is possible because useful specimen thicknesses are always much less than the depth of field in an electron microscope. Thus electron images record the amount of stain in columns of the object normal to the recording plates. For single particles, practical considerations dictate that the specimen be tilted precisely about a single axis. In so doing a reconstructed image is achieved serially from two-dimensional sections which in turn are generated by a series of back-to-front lines of projection data.


2020 ◽  
Author(s):  
Hongfeng Sheng ◽  
Weixing Xu ◽  
Bin Xu ◽  
Hongpu Song ◽  
Di Lu ◽  
...  

UNSTRUCTURED The retrospective study of Taylor's three-dimensional external fixator for the treatment of tibiofibular fractures provides a theoretical basis for the application of this technology. The paper collected 28 patients with tibiofibular fractures from the Department of Orthopaedics in our hospital from March 2015 to June 2018. After the treatment, the follow-up evaluation of Taylor's three-dimensional external fixator for the treatment of tibiofibular fractures and concurrency the incidence of the disease, as well as the efficacy and occurrence of the internal fixation of the treatment of tibial fractures in our hospital. The results showed that Taylor's three-dimensional external fixator was superior to orthopaedics in the treatment of tibiofibular fractures in terms of efficacy and complications. To this end, the thesis research can be concluded as follows: Taylor three-dimensional external fixation in the treatment of tibiofibular fractures is more effective, and the incidence of occurrence is low, is a new technology for the treatment of tibiofibular fractures, it is worthy of clinical promotion.


2021 ◽  
pp. 002581722110183
Author(s):  
MA Kislov ◽  
M Chauhan ◽  
SN Zakharov ◽  
SV Leonov ◽  
YP Shakiryanova

Worldwide advances in computer techniques are not yet recognised in the practice of forensic medicine. A promising application is their use in making a three-dimensional reconstruction of the crime scene. This study analyses this technique in a homicide by firearm. Queries regarding the direction and number of shots, position of the victim inside the car when shot at and presence of the accused at the crime scene were answered by a scientific model. Similar reconstruction of the scene, nailing the accused in a heinous crime, has not previously been reported as a study or a case. The paper anticipates impetus to the growth of literature in criminology and forensic sciences. It will also expedite the delivery of justice based on scientific evidence in controversial causes of death.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Christoph Zindel ◽  
Philipp Fürnstahl ◽  
Armando Hoch ◽  
Tobias Götschi ◽  
Andreas Schweizer ◽  
...  

Abstract Background Computer-assisted three-dimensional (3D) planning is increasingly delegated to biomedical engineers. So far, the described fracture reduction approaches rely strongly on the performance of the users. The goal of our study was to analyze the influence of the two different professional backgrounds (technical and medical) and skill levels regarding the reliability of the proposed planning method. Finally, a new fragment displacement measurement method was introduced due to the lack of consistent methods in the literature. Methods 3D bone models of 20 distal radius fractures were presented to nine raters with different educational backgrounds (medical and technical) and various levels of experience in 3D operation planning (0 to 10 years) and clinical experience (1.5 to 24 years). Each rater was asked to perform the fracture reduction on 3D planning software. Results No difference was demonstrated in reduction accuracy regarding rotational (p = 1.000) and translational (p = 0.263) misalignment of the fragments between biomedical engineers and senior orthopedic residents. However, a significantly more accurate planning was performed in these two groups compared with junior orthopedic residents with less clinical experience and no 3D planning experience (p < 0.05). Conclusion Experience in 3D operation planning and clinical experience are relevant factors to plan an intra-articular fragment reduction of the distal radius. However, no difference was observed regarding the educational background (medical vs. technical) between biomedical engineers and senior orthopedic residents. Therefore, our results support the further development of computer-assisted surgery planning by biomedical engineers. Additionally, the introduced fragment displacement measure proves to be a feasible and reliable method. Level of Evidence Diagnostic Level II


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3149
Author(s):  
Angelika Zaszczyńska ◽  
Maryla Moczulska-Heljak ◽  
Arkadiusz Gradys ◽  
Paweł Sajkiewicz

Tissue engineering (TE) scaffolds have enormous significance for the possibility of regeneration of complex tissue structures or even whole organs. Three-dimensional (3D) printing techniques allow fabricating TE scaffolds, having an extremely complex structure, in a repeatable and precise manner. Moreover, they enable the easy application of computer-assisted methods to TE scaffold design. The latest additive manufacturing techniques open up opportunities not otherwise available. This study aimed to summarize the state-of-art field of 3D printing techniques in applications for tissue engineering with a focus on the latest advancements. The following topics are discussed: systematics of the available 3D printing techniques applied for TE scaffold fabrication; overview of 3D printable biomaterials and advancements in 3D-printing-assisted tissue engineering.


2013 ◽  
Vol 11 (01) ◽  
pp. 1340012 ◽  
Author(s):  
SEYED SHAHRIAR ARAB ◽  
MOHAMMADBAGHER PARSA GHARAMALEKI ◽  
ZAIDDODINE PASHANDI ◽  
REZVAN MOBASSERI

Computer assisted assignment of protein domains is considered as an important issue in structural bioinformatics. The exponential increase in the number of known three dimensional protein structures and the significant role of proteins in biology, medicine and pharmacology illustrate the necessity of a reliable method to automatically detect structural domains as protein units. For this aim, we have developed a program based on the accessible surface area (ASA) and the hydrogen bonds energy in protein backbone (HBE). PUTracer (Protein Unit Tracer) is built on the features of a fast top-down approach to cut a chain into its domains (contiguous domains) with minimal change in ASA as well as HBE. Performance of the program was assessed by a comprehensive benchmark dataset of 124 protein chains, which is based on agreement among experts (e.g. CATH, SCOP) and was expanded to include structures with different types of domain combinations. Equal number of domains and at least 90% agreement in critical boundary accuracy were considered as correct assignment conditions. PUTracer assigned domains correctly in 81.45% of protein chains. Although low critical boundary accuracy in 18.55% of protein chains leads to the incorrect assignments, adjusting the scales causes to improve the performance up to 89.5%. We discuss here the success or failure of adjusting the scales with provided evidences. Availability: PUTracer is available at http://bioinf.modares.ac.ir/software/PUTracer/


1989 ◽  
Vol 101 (5) ◽  
pp. 522-526 ◽  
Author(s):  
Charles Lutz ◽  
Akira Takagi ◽  
Ivo P. Janecka ◽  
Isamu Sando

The complexities of the temporal bone and the critical inter-relationships among its key structures can be simplified with three-dimensional computer-assisted reconstruction. Knowledge of the topography of these structures and their mutual relationships in essential in any surgical approach to the temporal bone. Sixty sagittal histologic sections of a normal left temporal bone were examined. Each section, 30 μm in thickness, was optically enlarged. Segments representing the facial nerve, internal carotid artery, and inner ear structures from individual slides were traced and data were entered into a computer. A personal computer was used for data processing and analysis. Graphic software developed in our laboratory generated images with x-y-z coordinates that could be rotated In any plane. The high resolution of the computer graphics system, combined with the precision of histologic sections, permitted study of the critical three-dimensional anatomic relationships among essential intratemporal bone structures. The capability of reproducing individual and joint images of the intratemporal bone structures and viewing them from all surgical angles gives skull base and otologic surgeons Important topographic guidance. Accurate spatial measurements of temporal bone anatomy are now possible with the application of computer graphic technology.


Sign in / Sign up

Export Citation Format

Share Document