CspE is Overproduced by Temperature Downshift in the Acinetobacter johnsonii DBP-3

2016 ◽  
Vol 72 (5) ◽  
pp. 563-569 ◽  
Author(s):  
Dan Su ◽  
Linlin Hao ◽  
Fuwang Chen ◽  
Siming Li ◽  
Ahmed Mohamed Abdelrahman ◽  
...  
2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

2010 ◽  
Vol 150 ◽  
pp. 44-44 ◽  
Author(s):  
Kimchhayarasy. Phuong ◽  
Kazuo. Kakii ◽  
Toshiyuki. Nikata

2004 ◽  
Vol 47 (6) ◽  
pp. 999-1003 ◽  
Author(s):  
Priscila Maria Dellamatrice ◽  
Regina Teresa Rosim Monteiro

Studies were carried out on the isolation of diuron-degrading bacteria from treated soil. The mineralization of 14C-diuron in soil following a three-year application and in soil without previous application were 68.95 mug.100 g-1 and 24.16 mug.100 g-1, respectively, after a 64-day incubation period. In the first soil there was a significant increase in the number of bacteria, from 3.3 x 10 6 to 1.9 x 10(8). The microbial biomass did not change, however, a significant 14C-residue of diuron was found in the microbial biomass. A consortium of three bacteria, Acinetobacter johnsonii and two Bacillus spp., was isolated in medium containing diuron as the only carbon source. Only A. johnsonii was able to grow alone in medium with diuron as the only carbon source.


2013 ◽  
Vol 79 (12) ◽  
pp. 3867-3869 ◽  
Author(s):  
Elias Dahlsten ◽  
David Kirk ◽  
Miia Lindström ◽  
Hannu Korkeala

ABSTRACTThe role of the alternative sigma factor SigK in cold and osmotic stress tolerance ofClostridium botulinumATCC 3502 was demonstrated by induction ofsigKafter temperature downshift and exposure to hyperosmotic conditions and by impaired growth of thesigKmutants under the respective conditions.


2019 ◽  
Vol 127 ◽  
pp. 246-249 ◽  
Author(s):  
Weijun Wang ◽  
Xiaoxin Chen ◽  
Hai Yan ◽  
Jiye Hu ◽  
Xiaolu Liu

2003 ◽  
Vol 69 (10) ◽  
pp. 6056-6063 ◽  
Author(s):  
Anushree Malik ◽  
Masashi Sakamoto ◽  
Shohei Hanazaki ◽  
Masamitsu Osawa ◽  
Takanori Suzuki ◽  
...  

ABSTRACT Thirty-two strains of nonflocculating bacteria isolated from sewage-activated sludge were tested by a spectrophotometric assay for their ability to coaggregate with one other in two-membered systems. Among these strains, eight showed significant (74 to 99%) coaggregation with Acinetobacter johnsonii S35 while only four strains coaggregated, to a lesser extent (43 to 65%), with Acinetobacter junii S33. The extent and pattern of coaggregation as well as the aggregate size showed good correlation with cellular characteristics of the coaggregating partners. These strains were identified by sequencing of full-length 16S rRNA genes. A. johnsonii S35 could coaggregate with strains of several genera, such as Oligotropha carboxidovorans, Microbacterium esteraromaticum, and Xanthomonas spp. The role of Acinetobacter isolates as bridging organisms in multigeneric coaggregates is indicated. This investigation revealed the role of much-neglected nonflocculating bacteria in floc formation in activated sludge.


Author(s):  
Gongli Zong ◽  
Chuanqing Zhong ◽  
Jiafang Fu ◽  
Yu Zhang ◽  
Peipei Zhang ◽  
...  

Abstract Background Carbapenem resistant Acinetobacter species have caused great difficulties in clinical therapy in the worldwide. Here we describe an Acinetobacter johnsonii M19 with a novel blaOXA-23 containing transposon Tn6681 on the conjugative plasmid pFM-M19 and the ability to transferand carbapenem resistance. Methods A. johnsonii M19 was isolated under selection with 8 mg/L meropenem from hospital sewage, and the minimum inhibitory concentrations (MICs) for the representative carbapenems imipenem, meropenem and ertapenem were determined. The genome of A. johnsonii M19 was sequenced by PacBio RS II and Illumina HiSeq 4000 platforms. A homologous model of OXA-23 was generated, and molecular docking models with imipenem, meropenem and ertapenem were constructed by Discovery Studio 2.0. Type IV secretion system and conjugation elements were identified by the Pathosystems Resource Integration Center (PATRIC) server and the oriTfinder. Mating experiments were performed to evaluate transfer of OXA-23 to Escherichia coli 25DN. Results MICs of A. johnsonii M19 for imipenem, meropenem and ertapenem were 128 mg/L, 48 mg/L and 24 mg/L, respectively. Genome sequencing identified plasmid pFM-M19, which harbours the carbapenem resistance gene blaOXA-23 within the novel transposon Tn6681. Molecular docking analysis indicated that the elongated hydrophobic tunnel of OXA-23 provides a hydrophobic environment and that Lys-216, Thr-217, Met-221 and Arg-259 were the conserved amino acids bound to imipenem, meropenem and ertapenem. Furthermore, pFM-M19 could transfer blaOXA-23 to E. coli 25DN by conjugation, resulting in carbapenem-resistant transconjugants. Conclusions Our investigation showed that A. johnsonii M19 is a source and disseminator of blaOXA-23 and carbapenem resistance. The ability to transfer blaOXA-23 to other species by the conjugative plasmid pFM-M19 raises the risk of spread of carbapenem resistance. Graphic abstract The carbapenem resistance gene blaOXA-23 is disseminated by a conjugative plasmid containing the novel transposon Tn6681 in Acinetobacter johnsonii M19.


Sign in / Sign up

Export Citation Format

Share Document