scholarly journals What can crop stable isotopes ever do for us? An experimental perspective on using cereal carbon stable isotope values for reconstructing water availability in semi-arid and arid environments

2019 ◽  
Vol 28 (5) ◽  
pp. 497-512 ◽  
Author(s):  
Pascal Flohr ◽  
Emma Jenkins ◽  
Helen R. S. Williams ◽  
Khalil Jamjoum ◽  
Sameeh Nuimat ◽  
...  
2015 ◽  
Vol 12 (6) ◽  
pp. 6115-6149 ◽  
Author(s):  
M. Gaj ◽  
M. Beyer ◽  
P. Koeniger ◽  
H. Wanke ◽  
J. Hamutoko ◽  
...  

Abstract. Stable isotopes (deuterium, 2H, and oxygen-18, 18O) of soil pore water were measured directly in the field using tunable off-axis integrated cavity output spectroscopy (OA-ICOS) and commercially available soil gas probes in a semi-arid region of the Cuvelai-Etosha-Basin, Namibia. High spatial and temporal resolution was achieved in the study area with reasonable accuracy and measurements were in agreement with laboratory-based cryogenic vacuum extraction and subsequent cavity ring down laser spectroscopic isotope analysis (CRDS). After drift correction of the isotope data, mean precision for over 140 measurements of two consecutive field campaigns in June and November 2014 were 1.8 and 0.46 ‰ for δ2H and 18O, respectively. Mean Accuracy using quality check standards was 5 and 0.3 ‰ for δ2H and δ18O, respectively. Results support the applicability of an in-situ measurement system for the determination of stable isotopes in soil pore water. Spatio-temporal variability could be deduced with the observed data in an extremely dry evaporation dominated environment which was sporadically affected by intermittent rainfall.


2016 ◽  
Vol 20 (2) ◽  
pp. 715-731 ◽  
Author(s):  
Marcel Gaj ◽  
Matthias Beyer ◽  
Paul Koeniger ◽  
Heike Wanke ◽  
Josefina Hamutoko ◽  
...  

Abstract. Stable isotopes (deuterium, 2H, and oxygen-18, 18O) of soil water were measured in the field using a liquid water isotope analyzer (tunable off-axis integrated cavity output spectroscope, OA-ICOS, LGR) and commercially available soil gas probes (BGL-30, UMS, Munich) in the semi-arid Cuvelai–Etosha Basin (CEB), Namibia. Results support the applicability of an in situ measurement system for the determination of stable isotopes in soil pore water. High spatial and temporal resolution was achieved in the study area with reasonable accuracy and measurements were in agreement with laboratory-based cryogenic vacuum extraction and subsequent cavity ring-down laser spectroscopic isotope analysis (CRDS, L2120-i, Picarro Inc.). After drift and span correction of the in situ isotope data, precision for over 140 measurements taken during two consecutive field campaigns (June and November 2014) was 1.8 and 0.48 ‰ for δ2H and δ18O, respectively. Mean measurement trueness is determined using quality check standards and was 5 and 0.3 ‰ for δ2H and δ18O, respectively. The isotope depth profiles are used quantitatively to calculate a soil water balance. The contribution of transpiration to total evapotranspiration ranged between 72 and 92 %. Shortly after a rain event, the contribution of transpiration was much lower, at 35 to 50 %. Potential limitations of such an in situ system are related to environmental conditions which could be minimized by using a temperature-controlled chamber for the laser spectrometer. Further, the applicability of the system using previously oven-dried soil material might be limited by physicochemical soil properties (i.e., clay minerals). Uncertainty in the in situ system is suggested to be reduced by improving the calibration procedure and further studying fractionation effects influencing the isotope ratios in the soil water, especially at low water contents. Furthermore, the influence of soil-respired CO2 on isotope values within the root zone could not be deduced from the data.


2020 ◽  
Author(s):  
Shana R Welles ◽  
Jennifer L Funk

Abstract Background and Aims In water-limited landscapes, some plants build structures that enable them to survive with minimal water (drought resistance). Instead of making structures that allow survival through times of water limitation, annual plants may invoke a drought escape strategy where they complete growth and reproduction when water is available. Drought escape and resistance each require a unique combination of traits and therefore plants are likely to have a suite of trait values that are consistent with a single drought response strategy. In environments where conditions are variable, plants may additionally evolve phenotypically plastic trait responses to water availability. Invasive annual species commonly occur in arid and semi-arid environments and many will be subject to reduced water availability associated with climate change. Assessing intraspecific trait variation across environmental gradients is a valuable tool for understanding how invasive plants establish and persist in arid environments. Methods In this study, we used a common garden experiment with two levels of water availability to determine how traits related to carbon assimilation, water use, biomass allocation and flowering phenology vary in California wild radish populations across an aridity gradient. Key Results We found that populations from arid environments have rapid flowering and increased allocation to root biomass, traits associated with both drought escape and tolerance. Early flowering was associated with higher leaf nitrogen concentration and lower leaf mass per area, traits associated with high resource acquisition. While trait values varied across low- and high-water treatments, these shifts were consistent across populations, indicating no differential plasticity across the aridity gradient. Conclusions While previous studies have suggested that drought escape and drought resistance are mutually exclusive drought response strategies, our findings suggest that invasive annuals may employ both strategies to succeed in novel semi-arid environments. As many regions are expected to become more arid in the future, investigations of intraspecific trait variation within low water environments help to inform our understanding of potential evolutionary responses to increased aridity in invasive species.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 354
Author(s):  
El-Sayed M. Desoky ◽  
Elsayed Mansour ◽  
Mohamed M. A. Ali ◽  
Mohamed A. T. Yasin ◽  
Mohamed I. E. Abdul-Hamid ◽  
...  

The influence of 24-epibrassinolide (EBR24), applied to leaves at a concentration of 5 μM, on plant physio-biochemistry and its reflection on crop water productivity (CWP) and other agronomic traits of six maize hybrids was field-evaluated under semi-arid conditions. Two levels of irrigation water deficiency (IWD) (moderate and severe droughts; 6000 and 3000 m3 water ha−1, respectively) were applied versus a control (well-watering; 9000 m3 water ha−1). IWD reduced the relative water content, membrane stability index, photosynthetic efficiency, stomatal conductance, and rates of transpiration and net photosynthesis. Conversely, antioxidant enzyme activities and osmolyte contents were significantly increased as a result of the increased malondialdehyde content and electrolyte leakage compared to the control. These negative influences of IWD led to a reduction in CWP and grain yield-related traits. However, EBR24 detoxified the IWD stress effects and enhanced all the above-mentioned parameters. The evaluated hybrids varied in drought tolerance; Giza-168 was the best under moderate drought, while Fine-276 was the best under severe drought. Under IWD, certain physiological traits exhibited a highly positive association with yield and yield-contributing traits or CWP. Thus, exogenously using EBR24 for these hybrids could be an effective approach to improve plant and water productivity under reduced available water in semi-arid environments.


Sign in / Sign up

Export Citation Format

Share Document