scholarly journals Four millennia of vegetation and environmental history above the Hyrcanian forest, northern Iran

Author(s):  
Leila Homami Totmaj ◽  
Elias Ramezani ◽  
Kammaledin Alizadeh ◽  
Hermann Behling

AbstractPast vegetation, fire, and climate dynamics, as well as human impact, have been reconstructed for the first time in the highlands of the Gilan province in the Alborz mountains (above the Hyrcanian forest) for the last 4,300 cal yrs bp. Multi-proxy analysis, including pollen, spores, non-pollen palynomorphs, charcoal, and geochemical analysis, has been applied to investigate the environmental changes at 2,280 m a.s.l., above the Hyrcanian forest. Dominant steppe vegetation occurred in the study area throughout the recorded period. The formation of the studied mire deposits, as well as vegetation composition, suggest a change to wetter climatic conditions after 4,300 until 1,700 cal yrs bp. Fires were frequent, which may imply long-lasting anthropogenic activities in the area. Less vegetation cover with a marked decrease of the Moisture Index (MI) suggests drier conditions between 1,700 and 1,000 cal yrs bp. A high proportion of Cichorioideae and Amaranthaceae, as well as the reduction of trees, in particular Fagus and Quercus, at lower elevations, indicate human activities such as intense livestock grazing and deforestation. Soil erosion as the result of less vegetation due to dry conditions and/or human activities can be reconstructed from a marked increase of Glomus spores and high values of K and Ti. Since 1,000 cal yrs bp, the increasing MI, as well as the rise of Poaceae and Cyperaceae together with forest recovery, suggest a change to wetter conditions. The occurrence of still frequent Cichorioideae and Plantago lanceolata along with Sordaria reflect continued intense grazing of livestock by humans.

Author(s):  
Lazarus Kinyua Ngari

This article sets out to unravel aspects of environmental changes in the Upper Tana during the second millennium AD. This aspect has not been adequately addressed in the Upper Tana. This makes it clear that a lacuna exists in the study of communities of the Upper Tana and the way they interact with their environment in the past and present times. The objective of this article is to evaluate the relationship between human activities and environmental change in the Upper Tana from AD 1000 to 1950. It is hypothesized that the advent of iron technology and its attendant economic activities led to the depletion of indigenous forests and the general environmental degradation. The article has employed archaeological, ethnographic, oral and historical methodologies to gather data on vegetation change in the Upper Tana and other related regions.  The article, argues that livestock grazing, iron smelting, slush and burn agriculture, and the clearing of forests for housing are key contributors to vegetation change in the Upper Tana.  Results from oral reconstruction of the past vegetation of the area, and using the plant succession theory, shows that the lowland area of the Upper Tana is actually savanna with scattered trees probably inhabited by grazers. It is posited that the above factors, together with persistent droughts have altered the vegetation cover of the area.  What we have today is colonization of less desirable stunted growth. The theory advanced here is that the vegetation change has been a result of human activities.  Overwhelmingly, results the study that the researcher carried out, showed that the causes of these changes have been socio-economically associated with the expansion of agricultural communities into the area; rather than through climatic factors. Colonisation and other forces of modernistion have also contributed to the underlying problem. The article concludes that anthropogenetic factors have greatly contributed to environmental change in the upper Tana. Certainly, environmental change is a global phenomenon that has elicited research interests due to its negative impacts on human population. It is recommended that knowledge of environmental change in the past should be used to extrapolate modern environmental challenges affecting African ecosystems.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise P. Silva ◽  
Helena D. M. Villela ◽  
Henrique F. Santos ◽  
Gustavo A. S. Duarte ◽  
José Roberto Ribeiro ◽  
...  

Abstract Background Beginning in the last century, coral reefs have suffered the consequences of anthropogenic activities, including oil contamination. Chemical remediation methods, such as dispersants, can cause substantial harm to corals and reduce their resilience to stressors. To evaluate the impacts of oil contamination and find potential alternative solutions to chemical dispersants, we conducted a mesocosm experiment with the fire coral Millepora alcicornis, which is sensitive to environmental changes. We exposed M. alcicornis to a realistic oil-spill scenario in which we applied an innovative multi-domain bioremediator consortium (bacteria, filamentous fungi, and yeast) and a chemical dispersant (Corexit® 9500, one of the most widely used dispersants), to assess the effects on host health and host-associated microbial communities. Results The selected multi-domain microbial consortium helped to mitigate the impacts of the oil, substantially degrading the polycyclic aromatic and n-alkane fractions and maintaining the physiological integrity of the corals. Exposure to Corexit 9500 negatively impacted the host physiology and altered the coral-associated microbial community. After exposure, the abundances of certain bacterial genera such as Rugeria and Roseovarius increased, as previously reported in stressed or diseased corals. We also identified several bioindicators of Corexit 9500 in the microbiome. The impact of Corexit 9500 on the coral health and microbial community was far greater than oil alone, killing corals after only 4 days of exposure in the flow-through system. In the treatments with Corexit 9500, the action of the bioremediator consortium could not be observed directly because of the extreme toxicity of the dispersant to M. alcicornis and its associated microbiome. Conclusions Our results emphasize the importance of investigating the host-associated microbiome in order to detect and mitigate the effects of oil contamination on corals and the potential role of microbial mitigation and bioindicators as conservation tools. Chemical dispersants were far more damaging to corals and their associated microbiome than oil, and should not be used close to coral reefs. This study can aid in decision-making to minimize the negative effects of oil and dispersants on coral reefs.


2021 ◽  
Author(s):  
Alexandros Emmanouilidis ◽  
Konstantinos Panagiotopoulos ◽  
Katerina Kouli ◽  
Pavlos Avramidis

<p>Coastal wetlands are dynamic environments prone to climatic and anthropogenic forcing and ideal settings to study past climatic and environmental changes.  In the eastern Mediterranean region and particularly in Greece, the climate presents high spatiotemporal diversity, while human activity is a significant factor in shaping the landscape. This study presents a sediment record from Klisova lagoon, situated in central Greece, at the eastern part of Messolonghi lagoon complex. The area is recorded from antiquity to have great anthropogenic activity. The paleoenvironmental synthesis was based on standard sedimentological analysis (grain size, TOC, magnetic susceptibility), joint micropaleontological and palynological analysis, X-ray Fluorescence scanning, and radiocarbon dating. The Bayesian age-depth model is based on radiocarbon dating and yields an age of 4700 cal BP for the base of the recovered sediment sequence. For the last 4700 years, the freshwater influx, the progradation of the Evinos river delta and related geomorphological changes control the environmental conditions (e.g. depth and salinity) in the lagoon system. Prior to 4000 cal BP, a relatively shallow water depth, significant terrestrial/freshwater input and increased weathering in the lagoon area are inferred. Elemental proxies and increased dinoflagellate and foraminifera abundances, which indicate marine conditions with prominent freshwater influxes, point to the gradual deepening of the lagoon recorded at the drilling site up to 2000 cal BP. The marine and freshwater conditions equilibrium sets at 1300 cal BP, and the lagoonal system seems to reach its present state. Maxima of anthropogenic pollen indicators during the Mycenaean (~3200 cal BP), Hellenistic (~ 2200 cal BP) and Late Byzantine (~ 800 cal BP) periods suggest intervals of increased anthropogenic activities in the study area.  </p>


2009 ◽  
Vol 72 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Jemma Finch ◽  
Melanie J. Leng ◽  
Rob Marchant

AbstractLate Quaternary vegetation history and environmental changes in a biodiverse tropical ecosystem are inferred from pollen, charcoal and carbon isotope evidence derived from a ∼ 48,000-yr sedimentary record from the Uluguru Mountains, a component of the Eastern Arc Mountains of Kenya and Tanzania. Results indicate that Eastern Arc forest composition has remained relatively stable during the past ∼ 48,000 yr. Long-term environmental stability of the Eastern Arc forests has been proposed as a mechanism for the accumulation and persistence of species during glacial periods, thus resulting in the diverse forests observed today. The pollen and isotope data presented here indicate some marked changes in abundance but no significant loss in moist forest taxa through the last glacial maximum, thereby providing support for the long-term environmental stability of the Eastern Arc. Anthropogenic activities, including burning and forest clearance, were found to play a moderate role in shaping the mosaic of forest patches and high-altitude grasslands that characterise the site today; however, this influence was tempered by the inaccessibility of the mountain.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kosuke Ota ◽  
Yusuke Yokoyama ◽  
Yosuke Miyairi ◽  
Shinya Yamamoto ◽  
Toshihiro Miyajima

Lakes are sensitive recorders of anthropogenic activities, as human society often develops in their vicinity. Lake sediments thus have been widely used to reconstruct the history of environmental changes in the past, anthropogenic, or otherwise, and radiocarbon dating provides chronological control of the samples. However, specific values of radiocarbon in different carbon reservoirs due to the different pathways of radiocarbon from the upper atmosphere to the lake, called the radiocarbon reservoir age, is always difficult to evaluate because of dynamic processes in and around lakes. There are few systematic studies on radiocarbon reservoir ages for lakes owing to the complex radiocarbon transfer processes for lakes. Here, we investigate lake waters of the Fuji Five Lakes with monthly monitoring of the radiocarbon reservoir effects. Radiocarbon from dissolved inorganic carbon (DIC) for groundwater and river water is also measured, with resulting concentrations (Δ14C) at their lowest at Lake Kawaguchi in August 2018 (–122.4 ± 3.2‰), and at their highest at Lake Motosu in January 2019 (–22.4 ± 2.5‰), despite a distance of 25 km. However, winter values in both lakes show similar trends of rising Δ14C (about 20‰). Our lake water DIC Δ14C results are compared to previously published records obtained from sediments in Lake Motosu and Lake Kawaguchi. These suggest that total organic carbon and compound-specific radiocarbon found in sediments are heavily influenced by summer blooms of aquatic organisms that fix DIC in water. Thus, future studies to conduct similar analyses at the various lakes would be able to provide further insights into the carbon cycle around inland water, namely understanding the nature of radiocarbon reservoir ages.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3361
Author(s):  
Muhammad Yousuf Jat Baloch ◽  
Wenjing Zhang ◽  
Juanfen Chai ◽  
Shuxin Li ◽  
Muwaffaq Alqurashi ◽  
...  

For shallow groundwater, hydrogeochemical processes and quality assessment must be addressed because shallow groundwater is freely available in many parts of the globe. Due to recent anthropogenic activities and environmental changes in Sakrand, Sindh, Pakistan, the groundwater is extremely vulnerable. To provide safe drinking and agricultural water, hydrogeochemical analysis is required. Ninety-five groundwater samples were analyzed using agricultural and drinking indices to determine the hydrogeochemical parameters using multivariate analysis such as Pearson correlations, principal component cluster analysis, as well as Piper diagrams and Gibbs plot for drinking and agricultural indices. An abundance of ions was observed through the statistical summary; however, cations and anions were recorded in the orders Na+ > Ca2+ > Mg2+ > K+ and HCO3− > Cl− > SO42− > NO3− > F−. The hydrogeochemical process used to quantify the major reactions occurring in the groundwater system showed rock dominance; the Piper diagrams evaluated the water type. A mixed pattern of calcium, magnesium, and chloride ions (Ca2+−Mg2+−Cl− type) was observed. Additionally, the ion exchange method showed an excess of bicarbonate ions due to carbonic acid weathering. The water quality index (WQI) resulted 32.6% of groundwater being unsuitable for human consumption; however, the United States Salinity Laboratory (USSL) diagram showed 60% of samples fall in the irrigable category and the Wilcox diagram depicted 5% of samples lying in the unsuitable region. Most of the water samples were suitable for drinking; only a few samples were unsafe for drinking purposes for children due to the high hazard index. High salinity meant some samples were unsuitable for irrigation.


2020 ◽  
Vol 9 (1) ◽  
pp. 231-250
Author(s):  
Birendra Prasad Sharma ◽  
Subash Adhikari ◽  
Ganesh Paudel ◽  
Namita Paudel Adhikari

Microorganisms, as successive members of the food web, play a major role in biological processes. They are found in environments ranging from extremely hot to harsh cold temperatures. Thus, the study of bacterial communities in various ecosystems is of great concern around the world. The glacier is one of the parts of the cryosphere, which is the key component and sensitive indicator of climatic and environmental changes. A glacial ecosystem is a habitat for various microorganisms, i.e., autotrophic and heterotrophic. Different physicochemical parameters like temperature, pH, electrical conductivity, the input of nutrient concentration, precipitation, ions concentrations, etc. influence the microbial diversity in the glacial ecosystem for their metabolic processes. Successive studies of bacterial communities in the Himalayan glacial ecosystem are reliable proxies to know the relationships between microbial biodiversity and climate change since the Himalayan glaciers are free from anthropogenic activities. After the study of the relevant literature, it is clear that the researches. have been carried out in the Polar Regions, and the Tibetan plateau mainly focused on the glacial ecosystem. This review concluded that Proteobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Verrucomicrobia, and Actinobacteria were the most dominant bacterial phyla via 16S rRNA clone libraries and Illumina MiSeq. Alter in landscapes, nutrient cycles, exposure of light, shifting on the concentration of different elements, glacier retreats were the major components for survival strength of dominant bacterial phyla. However, limited studies on the glacial ecosystem of the Himalayas have been published. Thus, the study of bacterial abundance, diversity, and community in the Himalayas will help plug this research gap.


Sign in / Sign up

Export Citation Format

Share Document