scholarly journals Shallow Groundwater Quality Assessment and Its Suitability Analysis for Drinking and Irrigation Purposes

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3361
Author(s):  
Muhammad Yousuf Jat Baloch ◽  
Wenjing Zhang ◽  
Juanfen Chai ◽  
Shuxin Li ◽  
Muwaffaq Alqurashi ◽  
...  

For shallow groundwater, hydrogeochemical processes and quality assessment must be addressed because shallow groundwater is freely available in many parts of the globe. Due to recent anthropogenic activities and environmental changes in Sakrand, Sindh, Pakistan, the groundwater is extremely vulnerable. To provide safe drinking and agricultural water, hydrogeochemical analysis is required. Ninety-five groundwater samples were analyzed using agricultural and drinking indices to determine the hydrogeochemical parameters using multivariate analysis such as Pearson correlations, principal component cluster analysis, as well as Piper diagrams and Gibbs plot for drinking and agricultural indices. An abundance of ions was observed through the statistical summary; however, cations and anions were recorded in the orders Na+ > Ca2+ > Mg2+ > K+ and HCO3− > Cl− > SO42− > NO3− > F−. The hydrogeochemical process used to quantify the major reactions occurring in the groundwater system showed rock dominance; the Piper diagrams evaluated the water type. A mixed pattern of calcium, magnesium, and chloride ions (Ca2+−Mg2+−Cl− type) was observed. Additionally, the ion exchange method showed an excess of bicarbonate ions due to carbonic acid weathering. The water quality index (WQI) resulted 32.6% of groundwater being unsuitable for human consumption; however, the United States Salinity Laboratory (USSL) diagram showed 60% of samples fall in the irrigable category and the Wilcox diagram depicted 5% of samples lying in the unsuitable region. Most of the water samples were suitable for drinking; only a few samples were unsafe for drinking purposes for children due to the high hazard index. High salinity meant some samples were unsuitable for irrigation.

2020 ◽  
Vol 28 (2) ◽  
pp. 172-182
Author(s):  
Priscila Jackeline Arias Ordonez

In developing countries, tropical wetlands are essential for human livelihoods since they storage and provide freshwater for domestic, industrial, and agricultural uses. Unfortunately, tropical wetlands are subjected to anthropogenic impacts, such as direct discharge of municipal, industrial and livestock wastewater, leading to water pollution, and thus, affecting directly or indirectly people's health. Therefore, water quality assessment of these unique ecosystems using practical tools, such as Water Quality Index (WQI) is of great importance. This study aims to assess the water quality of one tropical Ramsar wetland La Tembladera for human consumption in wet and dry tropical seasons using WQI. This index was calculated using the following physical, chemical, and biological parameters: potential hydrogen (pH), turbidity, electrical conductivity (EC), dissolved oxygen (DO), biological oxygen demand (BOD5), chloride ions (Cl-), sulfates (SO42-), nitrates (NO3-), iron (Fe2+), Escherichia coli ( E. coli ), and Clostridium perfringens ( C. perfringens ). The WQI calculations revealed high values for the wet and dry tropical seasons, displaying values of 416.63 and 427.1, respectively. The obtained values indicate that the water of La Tembladera wetland is unsuitable for human consumption. These results might be valuable for legislative decision-makers to develop further recommendations and plans to improve the water quality, either for drinking purposes or other needs.


2021 ◽  
Author(s):  
Philisiwe P Mthembu ◽  
Vetrimurugan Elumalai ◽  
Peiyue Li ◽  
Sivakumar Uthandi ◽  
William P. Anderson

Abstract The metal contaminated groundwater results in serious health issues and hence this study attempts to address metal contamination and its sources by using integrated techniques including indexed and statistical methods and its related health hazards. Groundwater pH varied from 5.3 to 8.3 indicating acidic to alkaline in nature. Heavy metal evaluation index and degree of contamination reveal that all the groundwater samples fall under low pollution and are appropriate for human consumption. According to the pollution index majority of the samples fall in the insignificant pollution zone. Water quality index reveal that 19% and 2% of the groundwater samples belong to the poor and very poor water quality category and are spatially situated on the central, northern and southern parts of the study region. Correlation matrix and principal component analysis reveal that weathering of aquifer matrix and anthropogenic activities are accountable for the release of heavy metals into groundwater. Furthermore, R-mode and Q-mode cluster analysis revealed two clusters which are linked to mixed sources including weathering and anthropogenic activities. Based on the hazard quotient the order of heavy metal impact is: Co>Pb>Cd>Zn>As>Mn>Cu>Cr>Fe>Ni for both children and adult. The hazard index values varied from 0.06 to 8.16 for children and from 0.02 to 2.14 for adult. In this study, it is discovered that 43% and 26% of groundwater samples pose non-carcinogenic health risk in children and adult, respectively. This study highly recommends treatment of contaminated groundwater before consumption in order to protect and maintain the public health.


2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Adriana Muniz De Almeida Albuquerque

The water purification procedure aims to obtain a product appropriate for human consumption, minimizing the presence of contaminants and toxic substances present in the water. Among these contaminants, some radionuclides of natural origin, such as uranium, thorium and their descendants, have been identified. Studies have shown that the stages of purification are quite effective in removing the radionuclides contained in water. The removal is due to co-precipitation of the radionuclides with the suspended materials and the precipitated material is accumulated and characterized as a Technologically Concentrated Natural Occurrence Radioactive Material (TENORM) by the United States Environmental Protection Agency (USEPA). This residue can present significant levels of radioactivity and, when discarded in the environment without any treatment, can generate a problem of environmental impact and a risk to the health of the population. In this way, some gamma emitters of the series of U, Th and the K-40 were determined in the residues generated at the Potable Water Treatment Plants – PWTPs in six municipalities of Pernambuco. The results obtain corroborate the classification of the residues generated in the PWTPs as concentrators of the radioactive components contained in the water supplied to the system and reinforce the need for the release to the environment, which is the usual way of disposal of this waste, to be carried out only after considering the radiological protection standards established.


Author(s):  
Nicola Green ◽  
Rob Comber ◽  
Sharron Kuznesof

Humans beings in the 21st century face significant social and global change. Ever-evolving digital technologies are increasingly embedded in the material, economic, and socio-cultural milieu; while global crises in climate change present challenges to human and global security and resilience. Social science and human-computer interaction research has investigated how digital systems might help to understand current environmental changes and intervene in the problematic human relationships to scarce resources of the natural world. This chapter reviews research contributions of sustainable human-computer interaction (HCI) and the social sciences on human consumption of resources most crucial to human life: water, energy, and food (WEF). Briefly outlining the current and ongoing evolution of digital technologies particularly concerned with embedded urban digital infrastructures in “smart” and automated technologies and the Internet of Things, it then touches on the scope and scale of the simultaneous environmental challenges posed by population growth and urbanization. It introduces sustainable HCI as one approach that directly addresses both trends. The chapter then outlines the most significant approaches that have informed the development of “sustainable HCI,” and reviews important empirical contributions underpinning the developing interdisciplinary research in the field. It outlines the current understanding of household resource use and considers how developing digital technologies might support domestic resource conservation and mitigate intensive domestically based resource consumption. The chapter closes with observations on the shifting relationships (and sustainable HCI research into them) that might constitute future ways of being in a sustainable digital age.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rahman ◽  
N. C. Mondal ◽  
K. K. Tiwari

AbstractAn increased nitrate (NO3−) concentration in groundwater has been a rising issue on a global scale in recent years. Different consumption mechanisms clearly illustrate the adverse effects on human health. The goal of this present study is to assess the natural and anthropogenic NO3− concentrations in groundwater in a semi arid area of Rajasthan and its related risks to human health in the different groups of ages such as children, males, and females. We have found that most of the samples (n = 90) were influenced by anthropogenic activities. The background level of NO3− had been estimated as 7.2 mg/L using a probabilistic approach. About 93% of nitrate samples exceeded the background limit, while 28% of the samples were beyond the permissible limit of 45 mg/L as per the BIS limits. The results show that the oral exposure of nitrate was very high as compare to dermal contact. With regard to the non-carcinogenic health risk, the total Hazard Index (HITotal) values of groundwater nitrate were an average of 0.895 for males, 1.058 for females, and 1.214 for children. The nitrate health risk assessment shows that about 38%, 46%, and 49% of the samples constitute the non-carcinogenic health risk to males, females, and children, respectively. Children were found to be more prone to health risks due to the potential exposure to groundwater nitrate.


Author(s):  
Elisa Serviere-Zaragoza ◽  
Salvador E. Lluch-Cota ◽  
Alejandra Mazariegos-Villarreal ◽  
Eduardo F. Balart ◽  
Hugo Valencia-Valdez ◽  
...  

In the Gulf of California; mineral deposits have contributed to high metal contents in coastal environments. This study examined cadmium; lead; copper; zinc; and iron contents in three fish species; Kyphosus vaigiensis (herbivore), Stegastes rectifraenum (omnivore), and Balistes polylepis (carnivore) at two mining sites. Metal concentrations were analyzed by atomic absorption spectrophotometry and stable nitrogen and carbon isotopes were estimated using mass spectrophotometry. Also, we assessed the risk to human health from the consumption of these three species based on permissible limits; although only two of them (Kyphosus and Balistes) are consumed as food. Metal concentrations differed among fish species; except for iron. The highest concentrations of metals were not always recorded in the species at the highest trophic level; i.e., Balistes. The highest concentrations (dry weight) recorded were cadmium (0.21 ± 0.03 µg g−1) and lead (1.67 ± 0.26 µg g−1), in S. rectifraenum; copper (1.60 ± 0.49 µg g−1) and zinc (67.30 ± 8.79 µg g−1), in B. polylepis; and iron (27.06 ± 2.58 µg g−1), in K. vaigiensis. Our findings show that each element accumulates differently in particular marine organisms; depending on the physiology of the species and the biogeochemistry of its habitat; which in turn is affected by the anthropogenic activities in adjacent areas. No risk of heavy metals toxicity is expected from the human consumption of the species and sites studied


Author(s):  
Khadijah Nabilah Mohd Zahri ◽  
Azham Zulkharnain ◽  
Suriana Sabri ◽  
Claudio Gomez-Fuentes ◽  
Siti Aqlima Ahmad

In the present age, environmental pollution is multiplying due to various anthropogenic activities. Pollution from waste cooking oil is one of the main issues facing the current human population. Scientists and researchers are seriously concerned about the oils released from various activities, including the blockage of the urban drainage system and odor issues. In addition, cooking oil is known to be harmful and may have a carcinogenic effect. It was found that current research studies and publications are growing on these topics due to environmental problems. A bibliometric analysis of studies published from 2001 to 2021 on cooking oil degradation was carried out using the Scopus database. Primarily, this analysis identified the reliability of the topic for the present-day and explored the past and present progresses of publications on various aspects, including the contributing countries, journals and keywords co-occurrence. The links and interactions between the selected subjects (journals and keywords) were further visualised using the VOSviewer software. The analysis showed that the productivity of the publications is still developing, with the most contributing country being the United States, followed by China and India with 635, 359 and 320 publications, respectively. From a total of 1915 publications, 85 publications were published in the Journal of Agricultural and Food Chemistry. Meanwhile, the second and third of the most influential journals were Bioresource Technology and Industrial Crops and Products with 76 and 70 total publications, respectively. Most importantly, the co-occurrence of the author’s keywords revealed “biodegradation”, “bioremediation”, “vegetable oil” and “Antarctic” as the popular topics in this study area, especially from 2011 to 2015. In conclusion, this bibliometric analysis on the degradation of cooking oil may serve as guide for future avenues of research in this area of research.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise P. Silva ◽  
Helena D. M. Villela ◽  
Henrique F. Santos ◽  
Gustavo A. S. Duarte ◽  
José Roberto Ribeiro ◽  
...  

Abstract Background Beginning in the last century, coral reefs have suffered the consequences of anthropogenic activities, including oil contamination. Chemical remediation methods, such as dispersants, can cause substantial harm to corals and reduce their resilience to stressors. To evaluate the impacts of oil contamination and find potential alternative solutions to chemical dispersants, we conducted a mesocosm experiment with the fire coral Millepora alcicornis, which is sensitive to environmental changes. We exposed M. alcicornis to a realistic oil-spill scenario in which we applied an innovative multi-domain bioremediator consortium (bacteria, filamentous fungi, and yeast) and a chemical dispersant (Corexit® 9500, one of the most widely used dispersants), to assess the effects on host health and host-associated microbial communities. Results The selected multi-domain microbial consortium helped to mitigate the impacts of the oil, substantially degrading the polycyclic aromatic and n-alkane fractions and maintaining the physiological integrity of the corals. Exposure to Corexit 9500 negatively impacted the host physiology and altered the coral-associated microbial community. After exposure, the abundances of certain bacterial genera such as Rugeria and Roseovarius increased, as previously reported in stressed or diseased corals. We also identified several bioindicators of Corexit 9500 in the microbiome. The impact of Corexit 9500 on the coral health and microbial community was far greater than oil alone, killing corals after only 4 days of exposure in the flow-through system. In the treatments with Corexit 9500, the action of the bioremediator consortium could not be observed directly because of the extreme toxicity of the dispersant to M. alcicornis and its associated microbiome. Conclusions Our results emphasize the importance of investigating the host-associated microbiome in order to detect and mitigate the effects of oil contamination on corals and the potential role of microbial mitigation and bioindicators as conservation tools. Chemical dispersants were far more damaging to corals and their associated microbiome than oil, and should not be used close to coral reefs. This study can aid in decision-making to minimize the negative effects of oil and dispersants on coral reefs.


2017 ◽  
Vol 78 (4) ◽  
pp. 421-432 ◽  
Author(s):  
Carine M. Laporte ◽  
Crisanta Cruz-Espindola ◽  
Kamoltip Thungrat ◽  
Anthea E. Schick ◽  
Thomas P. Lewis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document