Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation

2005 ◽  
Vol 81 (7) ◽  
pp. 1465-1469 ◽  
Author(s):  
J. Olivares ◽  
G. García ◽  
F. Agulló-López ◽  
F. Agulló-Rueda ◽  
A. Kling ◽  
...  
1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.


2018 ◽  
Vol 44 (1) ◽  
pp. 144
Author(s):  
Tian-Peng LIU ◽  
Kong-Jun DONG ◽  
Xi-Cun DONG ◽  
Ji-Hong HE ◽  
Min-Xuan LIU ◽  
...  

2016 ◽  
Vol 7 (3) ◽  
pp. 172-179 ◽  
Author(s):  
B. A. Gurovich ◽  
K. E. Prikhodko ◽  
M. A. Tarkhov ◽  
A. G. Domantovsky ◽  
D. A. Komarov ◽  
...  

Author(s):  
Satyanarayan Dhal ◽  
Pritam Das ◽  
Arpita Patro ◽  
Madhuchhanda Swain ◽  
Sheela Rani Hota ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6575
Author(s):  
Yu Yang ◽  
Adrian Keller

Ion beam irradiation of solid surfaces may result in the self-organized formation of well-defined topographic nanopatterns. Depending on the irradiation conditions and the material properties, isotropic or anisotropic patterns of differently shaped features may be obtained. Most intriguingly, the periodicities of these patterns can be adjusted in the range between less than twenty and several hundred nanometers, which covers the dimensions of many cellular and extracellular features. However, even though ion beam nanopatterning has been studied for several decades and is nowadays widely employed in the fabrication of functional surfaces, it has found its way into the biomaterials field only recently. This review provides a brief overview of the basics of ion beam nanopatterning, emphasizes aspects of particular relevance for biomaterials applications, and summarizes a number of recent studies that investigated the effects of such nanopatterned surfaces on the adsorption of biomolecules and the response of adhering cells. Finally, promising future directions and potential translational challenges are identified.


Sign in / Sign up

Export Citation Format

Share Document