Difference Analysis of ClCYC2-Like Genes Expression and DNA Methylation Between the Two Types of Florets in Chrysanthemum lavandulifolium

Author(s):  
Fan Zhang ◽  
Chenfei Lu ◽  
Shuai Qi ◽  
Silan Dai
2019 ◽  
Vol 107 ◽  
pp. 12
Author(s):  
Paola Brivio ◽  
Giulia Sbrini ◽  
Letizia Tarantini ◽  
Chiara Favero ◽  
Mariusz Papp ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 876-876
Author(s):  
Katerina Rejlova ◽  
Karolina Kramarzova ◽  
Meritxell Alberich-Jorda ◽  
Karel Fiser ◽  
Marketa Zaliova ◽  
...  

Abstract Homeobox genes (HOX) encode transcription factors that are frequently deregulated in leukemias. Our previous findings described that HOX gene expression differs among genetically characterized subtypes of pediatric AML with PML-RARa+ patients having the lowest overall HOX gene expression. We observed that HOX gene expression positively correlated with expression of histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX and negatively with DNA methyltransferase DNMT3b. Interestingly, it has been shown that JMJD3 is a direct target of PML-RARa protein (Martens, JH et al, 2010, Cancer Cell). These findings led us to postulate the hypothesis that reduced levels of HOX genes in PML-RARa+ AML can be caused by the suppressed expression of histone demethylases, such as JMJD3 and UTX, resulting in increased H3K27 methylation and transcription inhibition. We chose PML-RARa+ NB4 cell line to study the role of PML-RARa fusion gene in the regulation of HOX gene expression. To inhibit the effect of PML-RARa we used all-trans retinoic acid (ATRA; 1 uM, 10 uM) which was described to release the block caused by this fusion protein. Expression of particular HOX genes (e.g., HOXA1, HOXA3, HOXA5, HOXA7) together with that of JMJD3 and UTX assessed by qPCR was significantly elevated after ATRA treatment, while gene expression of DNMT3b was decreased. To test whether the reduction in HOX gene expression is directly related to the levels of JMJD3 and UTX, we cultured NB4 cells with a specific inhibitor of these histone demethylases, GSK-J4 (1 uM, 10 uM), in combination with ATRA. This co-treatment led to inhibition of JMJD3 and UTX proteins, followed by significant reduction of HOX genes expression (e.g., HOXA1, HOXA3, HOXA5, HOXA7). This result supports our hypothesis that HOX genes expression is directly related to JMJD3/UTX activity. To determine the effect of ATRA and GSK-J4 on histone marks we have isolated histones by acid extraction and detected the levels of histones by western blot in NB4 ATRA or GSK-J4/ATRA treated cells. We observed that the level of repressive histone methylation mark (trimethylated H3K27; H3K27me3) was decreased after ATRA treatment (activation of JMJD3/UTX) and increased after GSK-J4/ATRA co-treatment (inhibition of JMJD3/UTX). The opposite effect was observed in active histone methylation marks where di- and tri-methylated H3K4 (H3K4me2, H3K4me3) increased after ATRA treatment and decreased after GSK-J4/ATRA co-treatment. H3K9 dimethylated (another repressive histone methylation mark) levels did not change. Next, to investigate the histone code directly in particular HOX genes regions we performed chromatin immunoprecipitation (ChIP) assays. We studied the presence of H3K27me3 and H3K4me2 in 5´UTR genomic region of particular HOX genes (HOXA1, HOXA2, HOXA3, HOXA5, HOXA7) in cells treated with ATRA alone or in the combination with GSK-J4. Preliminary results showed reduction in repressive marks (H3K27me3) upon ATRA treatment, whereas addition of GSK-J4 prevented this decrease. Accordingly, we observed that ATRA/GSK-J4 co-treatment reduced active histone mark H3K4me2. To evaluate the role of DNA methylation in observed expression changes after ATRA treatment we performed bisulfite sequencing of particular promoter sites of HOX genes (e.g., HOXA7, HOXA5). Although we detected decreased DNMT3b gene expression after ATRA treatment there was no change in DNA methylation of CpGs in studied regions. Our results demonstrate that changes in chromatin activity correspond with changes in HOX gene expression. Moreover, ChIP data show direct binding of the modified histones and HOX 5´UTR sites. Our data implicate histone demethylases in regulation of HOX gene expression in PML-RARa+ leukemic blasts. DNA methylation in these particular HOX genes is not involved in the regulation. Elucidating the mechanism of regulation of HOX genes expression can help to understand their role in the leukemogenic process. Supported by GACR P304/12/2214 and GAUK 568213. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
pp. 1-10
Author(s):  
Fan Zhang ◽  
Chengyan Deng ◽  
Silan Dai

Chrysanthemum lavandulifolium (Fischer ex Trautv.) Makino is a diploid plant belonging to the Asteraceae family, with typical capitula composed of female ray florets and bisexual disc florets. The differentiation and development of these two types of florets have long been important research focuses; however, the potential epigenetic mechanisms governing these processes have not been elucidated. In the present study, methylation-sensitive amplification polymorphism method was used to trace the dynamic changes of DNA methylation during capitulum development in C. lavandulifolium. DNA methylation patterns and levels were detected in the whole capitula during seven developmental stages, and the obtained results revealed that DNA demethylation was dominant during this process. In addition, DNA methylation patterns and levels showed significant differences between ray and disc florets. Moreover, the expression patterns of candidate genes potentially involved in the development processes of two types of florets were analyzed by real-time quantitative reverse transcription polymerase chain reaction, and correlation analysis indicated that the expression levels of ClPI, ClAG2, ClSEP1, ClCYC2c, ClCYC2d, and ClCYC2e were highly correlated with DNA methylation levels. These results indicate that DNA methylation may be involved in the differentiation and development of ray and disc florets. This study provides epigenetic insights into the capitulum development in C. lavandulifolium.


2002 ◽  
Vol 29 (3) ◽  
pp. 313-323 ◽  
Author(s):  
Olivier Mathieu ◽  
Yasushi Yukawa ◽  
Masahiro Sugiura ◽  
Georges Picard ◽  
Sylvette Tourmente

2008 ◽  
Vol 7 (8) ◽  
pp. 1010-1015 ◽  
Author(s):  
Qiu-ju LIANG ◽  
Li-na LIU ◽  
Jian PENG ◽  
Zhi-da SUN ◽  
Si-wen JIANG

BMC Cancer ◽  
2007 ◽  
Vol 7 (Suppl 1) ◽  
pp. A25 ◽  
Author(s):  
Erik de la Cruz-Hernandez ◽  
Adriana Contreras-Paredes ◽  
Alejandro Mohar ◽  
David Cantú ◽  
Marcela Lizano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document