Experimental investigation of water entry of bodies with constant deadrise angles under hydrophobic effects

2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Bülent Güzel ◽  
Fatih C. Korkmaz
2000 ◽  
Vol 122 (4) ◽  
pp. 806-810 ◽  
Author(s):  
Hong-Hui Shi ◽  
Motoyuki Itoh ◽  
Takuya Takami

When a high-speed projectile penetrates into water, a cavity is formed behind the projectile. The gas enclosed in the cavity experiences a nonequilibrium process, i.e., the gas pressure decreases as the projectile moves more deeply into water. As a result, the cavity is sealed near the free surface (surface closure) and subsequently the cavity breaks up in water (deep closure). Accompanying the break-up of the cavity, secondary shock waves appear. This is the so-called supercavitation in water entry. This paper describes an experimental investigation into the water entry phenomenon. Projectiles of 342 m/s were generated from a small-bore rifle that was fixed vertically in the experimental facility. The projectiles were fired into a windowed water tank. A shadowgraph optical observation was performed to observe the entry process of the projectile and the formation and collapse of the cavity behind the projectile. A number of interesting observations relating to the motion of the free surface, the splash, the underwater bubbly flow and so on were found. [S0098-2202(00)00204-2]


1994 ◽  
Vol 116 (3) ◽  
pp. 545-550 ◽  
Author(s):  
Venkappayya R. Desai ◽  
Nadim M. Aziz

An experimental investigation was conducted to study the effect of some geometric parameters on the efficiency of the cross-flow turbine. Turbine models were constructed with three different numbers of blades, three different angles of water entry to the runner, and three different inner-to-outer diameter ratios. Nozzles were also constructed for the experiments to match the three different angles of water entry to the runner. A total of 27 runners were tested with the three nozzles. The results of the experiments clearly indicated that efficiency increased with increase in the number of blades. Moreover, it was determined that an increase in the angle of attack beyond 24 deg does not improve the maximum turbine efficiency. In addition, as a result of these experiments, it was determined that for a 24 deg angle of attack 0.68 was the most efficient inner-to-outer diameter ratio, whereas for higher angles of attack the maximum efficiency decreases with an increase in the diameter ratio from 0.60 to 0.75.


2021 ◽  
Vol 239 ◽  
pp. 109819
Author(s):  
Hui Liu ◽  
Juntao Pi ◽  
Bo Zhou ◽  
Li Chen ◽  
Qiang Fu ◽  
...  

Author(s):  
Bulent Guzel ◽  
Fatih C. Korkmaz

The results of an experimental investigation on hull bottom slamming of three different geometries, sphere, cylinder and wedge, with hydrophobic surfaces are presented. In water entry of blunt bodies, different fluid dynamics phenomena like jet formation, cavity formation, water splashing, flow separation on solid surfaces and air entrapment between solid and liquid surface have been studied for decades. Our study is aimed at understanding and modeling the dynamics of slamming under an extended range of parameters including hydrophobic surfaces. In this study, drop tests have been set up for hull bottom slamming by dropping a body from various heights toward water surface. From digital images captured using a high speed camera, flow separation and water splashing at different velocities are observed and spreading diameters and entrance characteristics are measured during the impact process. At the same time, we measure the pressure distribution on the surface of the bodies during impact via strain gages.


2015 ◽  
Vol 104 ◽  
pp. 397-404 ◽  
Author(s):  
Mohammad Reza Erfanian ◽  
Morteza Anbarsooz ◽  
Nasrollah Rahimi ◽  
Mohsen Zare ◽  
Mohammad Moghiman

Author(s):  
Bulent Guzel ◽  
Fatih C. Korkmaz

Prediction of hydrodynamic loads during water exit of a body is of a great importance in designing the marine vehicles that take off from the free water surface such as sea planes and wing-in-ground effect vehicles (WIG), and that pierce through the free surface like missiles and submarines. The results of an experimental investigation on water exit of two different geometries, sphere and flat plate, with hydrophobic surfaces are presented in this paper. With and without the hydrophobic effects present, different fluid dynamics phenomena like free surface evolution, deformation and break up of free surface, wave generation, splash, air entrapment and water detachment from the solid surfaces during a water exit event have been examined. The non-dimensional exit coefficient, Ce is a function of the total vertical hydrodynamic force which depends on the geometry of the object and the hydrodynamic conditions along with the water parameters. Our study is aimed at understanding and modeling the nonlinear free surface effects and the dynamics of water exit under an extended range of parameters including hydrophobic effects. In this study, due to lack of the experimental data on the water exit problem in literature, water exit tests have been set up, first for initially partially immersed spheres and flat plates, with their center above the free surface, to be towed vertically from the water surface at various speeds. Secondly, buoyancy driven water exit of a fully immersed sphere is investigated. It is observed that when the sphere rises up, it first starts deforming the free surface, and then pierces into it. The thin water layer attached to the surface of the sphere is drawn back to the test tank as the sphere moves further upward. This causes breaking of the free surface, air entrapment and wave generation in the water tank. From digital images captured using a high speed camera, free surface breakup and water detachment at different velocities are observed and the time evolution of the water detachment and the exit characteristics are measured during a water exit event. The position of the sphere and its velocity are plotted against time. A detailed measurement of the global loads on the test objects during exit is carried out by employing strain gauges. We also showed the effects of water detachment on the test bodies during exit and after fully exited via strain gauges. All this data is also collected under the hydrophobic effects, to show how the change in surface characteristics would have significant impacts on the water exit phenomenon. Analyzing the difference in occurrence of water flow separation, the change in kinetic energy of the fluid and the free surface deformation under the hydrophobic effects may help give a better explanation of the phenomena observed during water exit and improve the design characteristics of marine structures for a water exit event.


Sign in / Sign up

Export Citation Format

Share Document