Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture

2008 ◽  
Vol 44 (7) ◽  
pp. 991-995 ◽  
Author(s):  
E. Ciarlo ◽  
M. Conti ◽  
N. Bartoloni ◽  
G. Rubio
Keyword(s):  
Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Ralf Liebermann ◽  
Lutz Breuer ◽  
Tobias Houska ◽  
David Kraus ◽  
Gerald Moser ◽  
...  

The rising atmospheric CO2 concentrations have effects on the worldwide ecosystems such as an increase in biomass production as well as changing soil processes and conditions. Since this affects the ecosystem’s net balance of greenhouse gas emissions, reliable projections about the CO2 impact are required. Deterministic models can capture the interrelated biological, hydrological, and biogeochemical processes under changing CO2 concentrations if long-term observations for model testing are provided. We used 13 years of data on above-ground biomass production, soil moisture, and emissions of CO2 and N2O from the Free Air Carbon dioxide Enrichment (FACE) grassland experiment in Giessen, Germany. Then, the LandscapeDNDC ecosystem model was calibrated with data measured under current CO2 concentrations and validated under elevated CO2. Depending on the hydrological conditions, different CO2 effects were observed and captured well for all ecosystem variables but N2O emissions. Confidence intervals of ensemble simulations covered up to 96% of measured biomass and CO2 emission values, while soil water content was well simulated in terms of annual cycle and location-specific CO2 effects. N2O emissions under elevated CO2 could not be reproduced, presumably due to a rarely considered mineralization process of organic nitrogen, which is not yet included in LandscapeDNDC.


SOIL ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 265-274 ◽  
Author(s):  
Katelyn A. Congreves ◽  
Trang Phan ◽  
Richard E. Farrell

Abstract. Understanding the production pathways of potent greenhouse gases, such as nitrous oxide (N2O), is essential for accurate flux prediction and for developing effective adaptation and mitigation strategies in response to climate change. Yet there remain surprising gaps in our understanding and precise quantification of the underlying production pathways – such as the relationship between soil moisture and N2O production pathways. A powerful, but arguably underutilized, approach for quantifying the relative contribution of nitrification and denitrification to N2O production involves determining 15N2O isotopomers and 15N site preference (SP) via spectroscopic techniques. Using one such technique, we conducted a short-term incubation where N2O production and 15N2O isotopomers were measured 24 h after soil moisture treatments of 40 % to 105 % water-filled pore space (WFPS) were established for each of three soils that differed in nutrient levels, organic matter, and texture. Relatively low N2O fluxes and high SP values indicted nitrification during dry soil conditions, whereas at higher soil moisture, peak N2O emissions coincided with a sharp decline in SP, indicating denitrification. This pattern supports the classic N2O production curves from nitrification and denitrification as inferred by earlier research; however, our isotopomer data enabled the quantification of source partitioning for either pathway. At soil moisture levels < 53 % WFPS, the fraction of N2O attributed to nitrification (FN) predominated but thereafter decreased rapidly with increasing soil moisture (x), according to FN=3.19-0.041x, until a WFPS of 78 % was reached. Simultaneously, from WFPS of 53 % to 78 %, the fraction of N2O that was attributed to denitrification (FD) was modelled as FD=-2.19+0.041x; at moisture levels of > 78 %, denitrification completely dominated. Clearly, the soil moisture level during transition is a key regulator of N2O production pathways. The presented equations may be helpful for other researchers in estimating N2O source partitioning when soil moisture falls within the transition from nitrification to denitrification.


2007 ◽  
Vol 39 (9) ◽  
pp. 2362-2370 ◽  
Author(s):  
Xuejun J. Liu ◽  
Arvin R. Mosier ◽  
Ardell D. Halvorson ◽  
Curtis A. Reule ◽  
Fusuo S. Zhang

2016 ◽  
Vol 95 ◽  
pp. 40-50 ◽  
Author(s):  
Samiran Banerjee ◽  
Bobbi Helgason ◽  
Lianfeng Wang ◽  
Tristrom Winsley ◽  
Belinda C. Ferrari ◽  
...  

2011 ◽  
Vol 8 (6) ◽  
pp. 12197-12245
Author(s):  
G. J. Luo ◽  
N. Brüggemann ◽  
B. Wolf ◽  
R. Gasche ◽  
K. Butterbach-Bahl

Abstract. Besides agricultural soils, temperate forest soils have been identified as significant sources of or sinks for important atmospheric trace gases (N2O, NO, CH4, and CO2). Although the number of studies for this ecosystem type increased more than tenfold during the last decade, studies covering an entire year and spanning more than 1–2 yr remained scarce. This study reports the results of continuous measurements of soil-atmosphere C- and N-gas exchange with high temporal resolution carried out since 1994 at the Höglwald Forest spruce site, an experimental field station in Southern Germany. Annual soil N2O emission, NO emission, CH4 uptake, and CO2 emission (1994–2010) varied in a range of 0.2–3.2 kg N2O-N ha−1 yr−1, 6.4–11.4 kg NO-N ha−1 yr−1, 0.9–3.5 kg CH4-C ha−1 yr−1, and 7.0–9.2 t CO2-C ha−1 yr−1, respectively. The observed high fluxes of N-trace gases are most likely a consequence of high rates of atmospheric nitrogen deposition (> 20 kg N ha−1 yr−1) of NH3 and NOx to our site. For N2O cumulative annual emissions were > 0.8 kg N2O-N ha−1 yr−1 high in years with freeze-thaw events (5 out 14 yr). This shows that long-term, multi-year measurements are needed to obtain reliable estimates of N2O fluxes for a given ecosystem. Cumulative values of soil respiratory CO2 fluxes were highest in years with prolonged freezing periods e.g. the years 1996 and 2006, i.e. years with below average annual mean soil temperatures and high N2O emissions. The results indicate that long freezing periods may even drive increased CO2 fluxes not only during soil thawing but also throughout the following growing season. Furthermore, based on our unique database on GHGs we analyzed if soil temperature, soil moisture, or precipitation measurements can be used to approximate GHGs at weekly, monthly, or annual scale. Our analysis shows that simple-to-measure environmental drivers such as soil temperature or soil moisture are suitable to approximate fluxes of NO and CO2 in weekly and monthly scales with a reasonable uncertainty (accounting for up to 80 % of the variance). However, for N2O and CH4 we so far failed to find meaningful correlations and, thus, to provide simple regression models to estimate fluxes. This is most likely due to the complexity of involved processes and counteracting effects of soil moisture and temperature, specifically with regard to N2O production and consumption by denitrification and microbial community dynamics.


2019 ◽  
Author(s):  
Kate A. Congreves ◽  
Trang Phan ◽  
Richard E. Farrell

Abstract. Understanding the production pathways of potent greenhouse gases, such as nitrous oxide (N2O), is essential for accurate flux prediction and for developing effective adaptation and mitigation strategies in response to climate change. Yet, there remain surprising gaps in our understanding and precise quantification of the underlying production pathways – such as the relationship between soil moisture and N2O production pathways. A powerful, but arguably underutilized, approach for quantifying the relative contribution of nitrification and denitrification to N2O production involves determining 15N2O isotopomers and 15N site preference (SP) via spectroscopic techniques. Using one such technique we conducted a short-term incubation to precisely quantify the relationship between soil moisture and N2O production pathways. For each of three soils, microcosms were arranged in a complete random design with four replicates; each microcosm consisted of air-dried soil packed into plastic petri dishes wherein moisture treatments were established for water contents equivalent to 45 to 105 % water-filled pore space (WFPS). The microcosms were placed in 1-L jars and sealed; headspace samples were collected after 24-h and analyzed for total N2O concentrations using gas chromatography, and for 15N2O isotopomers using cavity ring-down spectroscopy. Relatively low N2O fluxes and high SP values indicted nitrification during dry soil conditions, whereas at higher soil moisture, peak N2O emissions coincided with a sharp decline in SP indicating denitrification. This pattern supports the classic N2O production curves from nitrification and denitrification as inferred by earlier research; however, our isotopomer data enabled the quantification of source partitioning for either pathway thereby providing clarity on N2O sources during the transition from nitrification to denitrification. At soil moisture levels  78 %, denitrification completely dominated. Clearly, the soil moisture levels during transition is a key regulation of N2O production pathways.


Geoderma ◽  
2018 ◽  
Vol 315 ◽  
pp. 49-58 ◽  
Author(s):  
Yi Liu ◽  
Yuefen Li ◽  
Paul Harris ◽  
Laura M. Cardenas ◽  
Robert M. Dunn ◽  
...  

2015 ◽  
Vol 178 (4) ◽  
pp. 631-640 ◽  
Author(s):  
Laisa Gouveia Pimentel ◽  
Douglas Adams Weiler ◽  
Gabriel Munhoz Pedroso ◽  
Cimélio Bayer

Soil Research ◽  
2015 ◽  
Vol 53 (5) ◽  
pp. 475 ◽  
Author(s):  
M. Rezaei Rashti ◽  
W. J. Wang ◽  
S. M. Harper ◽  
P. W. Moody ◽  
C. R. Chen ◽  
...  

The greenhouse gas fluxes and effective mitigation strategies in subtropical vegetable cropping systems remain unclear. In this field experiment, nitrous oxide (N2O) and methane (CH4) fluxes from an irrigated lettuce cropping system in subtropical Queensland, Australia, were measured using manual sampling chambers. Four treatments were included: Control (no fertiliser), U100 (100 kg N ha–1 as urea), U200 (200 kg N ha–1 as urea) and N100 (100 kg N ha–1 as nitrate-based fertilisers). The N fertilisers were applied in three splits and irrigation was delivered sparingly and frequently to keep soil moisture around the field capacity. The cumulative N2O emissions from the control, U100, U200 and N100 treatments over the 68-day cropping season were 30, 151, 206 and 68 g N2O-N ha–1, respectively. Methane emission and uptake were negligible. Using N2O emission from the Control treatment as the background emission, direct emission factors for U100, U200 and N100 treatments were 0.12%, 0.09% and 0.04% of applied fertiliser N, respectively. Soil ammonium (NH4+) concentration, instead of nitrate (NO3–) concentration, exhibited a significant correlation with N2O emissions at the site where the soil moisture was controlled within 50%–64% water-filled pore space. Furthermore, soil temperature rather than water content was the main regulating factor of N2O fluxes in the fertilised treatments. Fertiliser type and application rates had no significant effects on yield parameters. Partial N balance analysis indicated that approximately 80% and 52% of fertiliser N was recovered in plants and soil in the treatments receiving 100 kg N ha–1 and 200 kg N ha–1, respectively. Therefore, in combination with frequent and low-intensity irrigation and split application of fertiliser N, substitution of NO3–-based fertilisers for urea and reduction in fertiliser N application rates were considered promising mitigation strategies to maintain yield and minimise N2O emissions during the low rainfall season.


Sign in / Sign up

Export Citation Format

Share Document