Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits

2009 ◽  
Vol 45 (5) ◽  
pp. 531-538 ◽  
Author(s):  
Seth Nii-Annang ◽  
Holger Grünewald ◽  
Dirk Freese ◽  
Reinhard F. Hüttl ◽  
Oliver Dilly
2020 ◽  
Vol 94 (5) ◽  
pp. 1625-1638
Author(s):  
Andrew L. Thomas ◽  
Robert Kallenbach ◽  
Thomas J. Sauer ◽  
David K. Brauer ◽  
David M. Burner ◽  
...  

Abstract Agroforestry systems that integrate useful long-lived trees have been recognized for their potential in mitigating the accumulation of atmospheric fossil fuel-derived carbon (C). Black walnut (Juglans nigra) is frequently planted and cultivated in North America for its valuable lumber and edible nuts, and is highly amenable to the integration of understory crops or livestock in agroforestry systems. However, little is known about C content in black walnut trees, including the amounts of C assimilated into lignocellulosic tissues within different tree compartments. Therefore, allometric equations for above- and below-ground compartments of 10-year-old black walnut trees across diverse locations were developed. Ten grafted black walnut trees from each of four sites across the midwestern USA were destructively harvested for above- and below-ground biomass, and dry biomass weight (DWw), C (Cw) and nitrogen (N; Nw) stocks were quantified. Soils surrounding the harvested trees were sampled and analyzed for soil organic C (SOC) and total N (TN). Total DWw ranged from 27 to 54 kg tree−1, with woody tissues containing an average of 467 g kg−1 C and 3.5 g kg−1 N. Woody tissues differed in Cw and Nw across location, and above-ground sections contained more C and less N compared with most root tissues. The slopes of the allometric equations did not differ significantly among locations, while intercepts did, indicating that trees only differed in initial size across locations. SOC and TN did not vary in distance from the trees, likely because the trees were not yet old enough to have impacted the surrounding soils. Our results establish a foundation for quantifying C and N stocks in newly established black walnut alley cropping systems across diverse environments.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 225 ◽  
Author(s):  
Miguel A. Sánchez-Monedero ◽  
María L. Cayuela ◽  
María Sánchez-García ◽  
Bart Vandecasteele ◽  
Tommy D’Hose ◽  
...  

This paper reports the results on the agronomic performance of organic amendments in the EU 7th FP project “FERTIPLUS—reducing mineral fertilizers and agro-chemicals by recycling treated organic waste as compost and bio-char”. Four case studies on field-scale application of biochar, compost and biochar-blended compost were established and studied for three consecutive years in four distinct cropping systems and under different agro-climatic conditions in Europe. These included the following sites: olive groves in Murcia (Spain), greenhouse grown tomatoes in Almeria (Spain), an arable crop rotation in Oost-Vlaanderen (Merelbeke, Belgium), and three vineyards in Friuli Venezia Giulia (Italy). A slow pyrolysis oak biochar was applied, either alone or in combination with organic residues: compost from olive wastes in Murcia (Spain), sheep manure in Almeria (Spain), and compost from biowaste and green waste in Belgium and Italy. The agronomical benefits were evaluated based on different aspects of soil fertility (soil total organic carbon (TOC), pH, nutrient cycling and microbial activity) and crop nutritional status and productivity. All amendments were effective in increasing soil organic C in all the field trials. On average, the increase with respect to the control was about 11% for compost, 20% for biochar-blended compost, and 36% for biochar. The amendments also raised the pH by 0.15–0.50 units in acidic soils. Only biochar had a negligible fertilization effect. On the contrary, compost and biochar-blended compost were effective in enhancing soil fertility by increasing nutrient cycling (25% mean increase in extractable organic C and 44% increase in extractable N), element availability (26% increase in available K), and soil microbial activity (26% increase in soil respiration and 2–4 fold enhancement of denitrifying activity). In general, the tested amendments did not show any negative effect on crop yield and quality. Furthermore, in vineyards and greenhouse grown tomatoes cropping systems, compost and biochar-blended compost were also effective in enhancing key crop quality parameters (9% increase in grape must acidity and 16% increase in weight, 9% increase in diameter and 8% increase in hardness of tomato fruits) important for the quality and marketability of the crops. The overall results of the project suggest that the application of a mixture of biochar and compost can benefit crops. Therefore, biochar-blended compost can support and maintain soil fertility.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1054 ◽  
Author(s):  
Yining Niu ◽  
Zhuzhu Luo ◽  
Liqun Cai ◽  
Jeffrey A. Coulter ◽  
Yaoquan Zhang ◽  
...  

Cropping systems are structured to maximize crop yields and increase sustainability in agricultural production. A field study was conducted to investigate different long-term cropping systems on soil organic matter and microbial communities. The cropping systems studied were: (i) a 14-year continuous alfalfa (Medicago sativa L.) (CA), (ii) a 9-year alfalfa removed and rotated with 4–5 years continuous annual crops (spring wheat (Triticum aestivum L.), maize (Zea mays L.), potato (Solanum tuberosum L.), and millet (Panicum miliaceum L.)), and (iii) a 5-year field fallow after alfalfa. Results showed that continued annual crops decreased total organic C and labile organic C by 10 to 20% and 17 to 34% in the topsoil (0–30 cm), and by 15 to 35% and 20 to 46% in the subsoil (30–60 cm), respectively, compared with CA. Similar trends were found in soil total N concentration, which decreased by 7 to 20% in the topsoil. Highest microbial biomass C was found in CA. Shannon-Wiener diversity and substrate richness of soil microbes measured by Biolog EcoPlates was significantly affected by cropping system with CA exhibiting a higher degree of soil microbial functional diversity in the topsoil, while the lowest values were found in the alfalfa-potato system. The higher soil organic matter content and functional diversity of soil microbe in CA indicates that soil nutrition and microbial activity did not limit alfalfa development and growth in the dryland area. The lower microbial activity and functional diversity observed in the potato field indicates the importance of crop selection in cropping systems.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


2010 ◽  
pp. 41-49
Author(s):  
Md Abiar Rahman ◽  
Md Giashuddin Miah ◽  
Hisashi Yahata

Productivity of maize and soil properties change under alley cropping system consisting of four woody species (Gliricidia sepium, Leucaena leucocephala, Cajanus cajan and Senna siamea) at different nitrogen levels (0, 25, 50, 75 and 100% of recommended rate) were studied in the floodplain ecosystem of Bangladesh. Comparative growth performance of four woody species after pruning showed that L. leucocephala attained the highest height, while C. cajan produced the maximum number of branches. Higher and almost similar amount of pruned materials (PM) were obtained from S. siamea, G. sepium and C. cajan species. In general, maize yield increased with the increase in N level irrespective of added PM. However, 100% N plus PM, 75% N plus PM and 100% N without PM (control) produced similar yields. The grain yield of maize obtained from G. sepium alley was 2.82, 4.13 and 5.81% higher over those of L. leucocephala, C. cajan and S. siamea, respectively. Across the alley, only one row of maize in the vicinity of the woody species was affected significantly. There was an increasing trend in soil properties in terms of organic C, total N and CEC in alley cropping treatments especially in G. sepium and L. leucocephala alleys compared to the initial and control soils. Therefore, one fourth chemical N fertilizer can be saved without significant yield loss in maize production in alley cropping system.


2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


Author(s):  
Robert P. Larkin

Crop rotations and the inclusion of cover crops and green manures are primary tools in the sustainable management of soil-borne diseases in crop production systems. Crop rotations can reduce soil-borne disease through three general mechanisms: (1) serving as a break in the host-pathogen cycle; (2) by altering the soil physical, chemical, or biological characteristics to stimulate microbial activity and diversity; or (3) directly inhibiting pathogens through the release of suppressive or toxic compounds or the enhancement of specific antagonists. Brassicas, sudangrass, and related plant types are disease-suppressive crops well-known for their biofumigation potential but also have other effects on soil microbiology that are important in disease suppression. The efficacy of rotations for reducing soil-borne diseases is dependent on several factors, including crop type, rotation length, rotation sequence, and use of the crop (as full-season rotation, cover crop, or green manure). Years of field research with Brassica and non-Brassica rotation crops in potato cropping systems in Maine have documented the efficacy of Brassica green manures for the reduction of multiple soil-borne diseases. However, they have also indicated that these crops can provide disease control even when not incorporated as green manures and that other non-biofumigant crops (such as barley, ryegrass, and buckwheat) can also be effective in disease suppression. In general, all crops provided better disease control when used as green manure vs. as a cover crop, but the addition of a cover crop can improve control provided by most rotation crops. In long-term cropping system trials, rotations incorporating multiple soil health management practices, such as longer rotations, disease-suppressive rotation crops, cover crops, and green manures, and/or organic amendments have resulted in greater yield and microbial activity and fewer disease problems than standard rotations. These results indicate that improved cropping systems may enhance productivity, sustainability, and economic viability.


Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 147 ◽  
Author(s):  
Diana-Maria Seserman ◽  
Dirk Freese ◽  
Anita Swieter ◽  
Maren Langhof ◽  
Maik Veste

The alley-cropping systems (ACSs), which integrate parallel tree strips at varying distances on an agricultural field can result, complementarity of resource use, in an increased land-use efficiency. Practitioners’ concerns have been directed towards the productivity of such systems given a reduced area covered by agricultural crops. The land equivalent ratio (LER) serves as a valuable productivity indicator of yield performance and land-use efficiency in ACSs, as it compares the yields achieved in monocultures to those from ACSs. Consequently, the objective of this combined experimental and simulation study was to assess the tree- and crop-yields and to derive the LER and gross energy yield for two temperate ACSs in Germany under different design scenarios, i.e., tree arrangements (lee- or wind-ward) and ratios of tree area to crop area. Both LER and gross energy yields resulted in a convex curve where the maximum values were achieved when either the tree or crop component was dominant (>75% of the land area) and minimum when these components shared similar proportions of land area. The implications of several design scenarios have been discussed in order to improve the decision-making, optimization, and adaptation of the design of ACSs with respect to site-specific characteristics.


Sign in / Sign up

Export Citation Format

Share Document