scholarly journals Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems: Perspective from the European Project FERTIPLUS

Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 225 ◽  
Author(s):  
Miguel A. Sánchez-Monedero ◽  
María L. Cayuela ◽  
María Sánchez-García ◽  
Bart Vandecasteele ◽  
Tommy D’Hose ◽  
...  

This paper reports the results on the agronomic performance of organic amendments in the EU 7th FP project “FERTIPLUS—reducing mineral fertilizers and agro-chemicals by recycling treated organic waste as compost and bio-char”. Four case studies on field-scale application of biochar, compost and biochar-blended compost were established and studied for three consecutive years in four distinct cropping systems and under different agro-climatic conditions in Europe. These included the following sites: olive groves in Murcia (Spain), greenhouse grown tomatoes in Almeria (Spain), an arable crop rotation in Oost-Vlaanderen (Merelbeke, Belgium), and three vineyards in Friuli Venezia Giulia (Italy). A slow pyrolysis oak biochar was applied, either alone or in combination with organic residues: compost from olive wastes in Murcia (Spain), sheep manure in Almeria (Spain), and compost from biowaste and green waste in Belgium and Italy. The agronomical benefits were evaluated based on different aspects of soil fertility (soil total organic carbon (TOC), pH, nutrient cycling and microbial activity) and crop nutritional status and productivity. All amendments were effective in increasing soil organic C in all the field trials. On average, the increase with respect to the control was about 11% for compost, 20% for biochar-blended compost, and 36% for biochar. The amendments also raised the pH by 0.15–0.50 units in acidic soils. Only biochar had a negligible fertilization effect. On the contrary, compost and biochar-blended compost were effective in enhancing soil fertility by increasing nutrient cycling (25% mean increase in extractable organic C and 44% increase in extractable N), element availability (26% increase in available K), and soil microbial activity (26% increase in soil respiration and 2–4 fold enhancement of denitrifying activity). In general, the tested amendments did not show any negative effect on crop yield and quality. Furthermore, in vineyards and greenhouse grown tomatoes cropping systems, compost and biochar-blended compost were also effective in enhancing key crop quality parameters (9% increase in grape must acidity and 16% increase in weight, 9% increase in diameter and 8% increase in hardness of tomato fruits) important for the quality and marketability of the crops. The overall results of the project suggest that the application of a mixture of biochar and compost can benefit crops. Therefore, biochar-blended compost can support and maintain soil fertility.

2020 ◽  
Vol 6 (45) ◽  
pp. eaba1715 ◽  
Author(s):  
Giovanni Tamburini ◽  
Riccardo Bommarco ◽  
Thomas Cherico Wanger ◽  
Claire Kremen ◽  
Marcel G. A. van der Heijden ◽  
...  

Enhancing biodiversity in cropping systems is suggested to promote ecosystem services, thereby reducing dependency on agronomic inputs while maintaining high crop yields. We assess the impact of several diversification practices in cropping systems on above- and belowground biodiversity and ecosystem services by reviewing 98 meta-analyses and performing a second-order meta-analysis based on 5160 original studies comprising 41,946 comparisons between diversified and simplified practices. Overall, diversification enhances biodiversity, pollination, pest control, nutrient cycling, soil fertility, and water regulation without compromising crop yields. Practices targeting aboveground biodiversity boosted pest control and water regulation, while those targeting belowground biodiversity enhanced nutrient cycling, soil fertility, and water regulation. Most often, diversification practices resulted in win-win support of services and crop yields. Variability in responses and occurrence of trade-offs highlight the context dependency of outcomes. Widespread adoption of diversification practices shows promise to contribute to biodiversity conservation and food security from local to global scales.


Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Fiona A. Robertson ◽  
Peter J. Thorburn

The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).


2010 ◽  
Vol 61 (8) ◽  
pp. 659 ◽  
Author(s):  
S. R. Noack ◽  
T. M. McBeath ◽  
M. J. McLaughlin

Although not commonly used in dryland cropping systems to date, foliar phosphorus (P) fertilisation may allow a tactical response to prevailing seasonal climatic conditions, with the added benefit of reduced input costs at sowing. However, variable outcomes have been reported from field trials predominantly conducted in the USA, and to a lesser degree in Australia. The effectiveness of foliar P is dependent on soil P status, soil water status, crop type, fertiliser formulation and prevailing climatic conditions. This review argues that the potential of foliar P fertilisation in Australian dryland cereal cropping could be enhanced by altering formulations for enhanced leaf penetration using adjuvants, and by accurately assessing the responsiveness of sites before application. This review demonstrates that it is important to use appropriate techniques such as isotopic labelling, to measure the efficacy and mode of action of foliar formulations.


1990 ◽  
Vol 62 (4) ◽  
pp. 321-330
Author(s):  
Helvi Heinonen-Tanski

From 1983 to 1988 the microbial activity of soil was measured by determining its nitrification potential, dehydrogenase activity, cellulolytic activity and respiration. The samples were Suitia silty clay soils under various types of conventional and organic cropping systems. The soil microbial activity was the highest in both organic cattle farm plots in the ley phase and conventional cattle farm plots in the ley phase. The difference between these two ley soils was not clear, partly because of the considerable statistical variance, but the microbial activity of organic cattle farm plots in clover leys tended to be higher than in conventionally cultivated grass leys. This favourable effect on dehydrogenase activity was not detected after poor overwintering in organic cattle farm plots in annual clover in 1984 and Persian clover in 1985, but some effect on nitrification was found in 1984. In many cases, soil microbial activity was still increased two to three years after the leys. The soil nitrification activities were often higher in organic plant production plots than in conventional plant production plots, but the dehydrogenase activities and cellulose decompositions of organic plant production plots were similar to those in conventional diverse plant production or barley monoculture plots.


Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Laura Poppick

New findings suggest antibiotics in cow manure can alter soil microbial activity, with implications for soil fertility and carbon emissions.


2015 ◽  
Vol 48 (4) ◽  
pp. 13-20
Author(s):  
A. Ahmad ◽  
Z.I. Ahmed ◽  
M. Shehzad ◽  
I. Aziz ◽  
K.S. Khan ◽  
...  

Abstract Water scarcity and land degradation are emerging threats to global food production. The dry land regions of world are affected by climate change to a greater extent and facing food insecurity. The current pattern of food production has been estimated to be inadequate to meet demands of growing population and required around 38% increase to meet world`s food demands by 2025. Food insecurity in erosion hit dry land regions of Pakistan also demands development of resource-efficient cropping systems to meet the food needs of population growing. The research studies involved different cropping patterns such as fallow-wheat, mungbean-wheat, sorghum-wheat, fallow-lentil, mungbean-lentil, sorghum-lentil, fallow-barley, mungbean-barley and sorghum-barley. The organic amendments involved farmyard manure, NPK, poultry manure, compost and inoculation by phosphorus solubilizing microbes. The effect of cropping systems and soil amendments were evaluated at field scale in terms of water use efficiency measured in terms of economic terms. The results of the studies revealed that double cropping (mungbean-lentil and mungbean-barley) was feasible option in the dryland regions of Pakistan if integrated with the use of poultry manure as alternate environmental-friendly strategy to cut down the use of mineral fertilizers and eliminate summer fallowing.


2020 ◽  
Vol 12 (7) ◽  
pp. 2747
Author(s):  
Hamidou Bah ◽  
Minghua Zhou ◽  
Simon Kizito ◽  
Ren Xiao ◽  
Syed Turab Raza ◽  
...  

With an increasing interest in closing the nutrient loop in agroecosystems, organic amendments are highly recommended as a reliable resource for soil nutrient recycling. However, from a carbon sequestration perspective, not much has been reported on the contribution of different organic amendments to soil organic carbon (SOC), crop carbon (C) uptake, and soil carbon dioxide (CO2) emissions in wheat-maize cropping systems of sloppy upland soil. To fill the knowledge gap, a two-year lysimeter-field plots experiment was conducted in a sloppy upland purplish soil under wheat-maize cropping systems. The experiments were arranged in a complete random block design with five treatment plots, namely; fresh pig slurry as organic manure (OM), crop residues (CR), conventional mineral fertilizers (NPK) as the control, organic manure plus mineral fertilizers (OMNPK), and crop residues plus mineral fertilizers (CRNPK). Our results showed the leaf photosynthesis rate was not significantly increased by organic amendment application treatments compared to NPK treatment, and was within a range of 4.8 to 45.3 µmol m−2 s−1 for the wheat season and −20.1 to 40.4 µmol m−2 s−1 for the maize season across the five treatments and the measured growth stages. The soil CO2 emissions for the maize season (in the range of 203 to 362 g C m−2) were higher than for the wheat season (in the range of 118 to 252 g C m−2) on average across the different experimental treatments over the two-year experiment. The organic amendment application increased annual cumulative CO2 emissions from 30% to 51% compared to NPK treatment. Over the two years, the average crop C uptake ranged from 174 to 378 g C m−2 and from 287 to 488 g C m−2 for the wheat and maize seasons, respectively, and the organic amendment application increased the crop C uptake by 4% to 23% compared to NPK treatment. In the organic amendment treatments, the C balance ranged from −160 to 460 g C m−2 and from −301 to 334 g C m−2 for the wheat and the maize seasons, respectively, which were greater than those in the NPK treatment. Overall, the present study results suggest incorporation of organic amendments could be an effective strategy for increasing C sequestration and sustaining crop productivity in sloppy upland soil.


Soil Research ◽  
2015 ◽  
Vol 53 (2) ◽  
pp. 190 ◽  
Author(s):  
M. Tatzber ◽  
N. Schlatter ◽  
A. Baumgarten ◽  
G. Dersch ◽  
R. Körner ◽  
...  

Recent studies show that a labile soil carbon (C) fraction determined with potassium permanganate (KMnO4) reflects the type of soil management. The present study combines the method for determining the active C (AC) pool with an alternative titration of the 0.02 m KMnO4 solution with sodium oxalate (Na2C2O4) for routine laboratory analyses. Three long-term field experiments investigated: (i) different cropping systems and 14C-labelled organic amendments, (ii) three different tillage systems, and (iii) the application of four different kinds of compost. The results showed the depletion of AC in the permanent bare-fallow system of the 14C-labelled field experiment. When calculating the ratio AC/total organic C (TOC), the depletion of the AC/TOC curve reflected a priming effect, in accord with previous work. We obtained significant positive correlations of AC with TOC, total nitrogen (Nt), humic acid-C and remaining 14C-labelled material. The AC in the tillage systems experiment was significantly (P < 0.05) different between all three tillage treatments at 0–10 cm depth, and the ratio AC/TOC also revealed a significant difference between minimum and conventional tillage treatments at 10–20 cm. For the compost field experiment, significant differences occurred between plots fertilised solely with N and plots receiving organic amendments. The AC/TOC ratio of the sewage sludge amendment was significantly lower than in all other systems. Correlations of AC with TOC for all samples of the different long-term field experiments revealed different behaviours in different soil types. The correlations of AC with Nt showed higher coefficients than with TOC. The applied methodology has a potential for sensitive and reliable detections of differences in soil organic matter characteristics.


Sign in / Sign up

Export Citation Format

Share Document