Grassland conversion to cropland decreased microbial assimilation of mineral N into their residues in a Chernozem soil

Author(s):  
Xueli Ding ◽  
Bin Zhang ◽  
Qi Chen ◽  
Hongbo He ◽  
William R. Horwath ◽  
...  
2011 ◽  
Vol 52 (No. 8) ◽  
pp. 377-384 ◽  
Author(s):  
J. Haberle ◽  
P. Svoboda ◽  
J. Krejčová

The apparent uptake of mineral nitrogen (N<sub>min</sub>) from top- and subsoil layers during the growth of winter wheat (Triticum aestivum L.) was studied in Prague-Ruzyne on clay loam Chernozem soil in years 1996&ndash;2003. Two (N0,&nbsp;N1) and three treatments, unfertilized (N0), fertilized with 100 kg (N1) and 200 kg (N2) nitrogen per hectare were observed in years 1996&ndash;2000 and 2001&ndash;2003, respectively. The apparent uptake of nitrogen from soil layers was calculated from the changes of N<sub>min</sub> content between sampling terms. Most of available mineral N in the soil down to 90 cm was almost fully depleted between tillering and anthesis in treatment N0. The uptake from subsoil layers was delayed and it continued during the period of grain filling in fertilized treatments. Nitrogen fertilization reduced utilization of N from subsoil. The apparent uptake of N from the zone 50&ndash;120 cm ranged from 21 to 62&nbsp;kg&nbsp;N/ha in&nbsp;N0 and from 15 to 60 kg N/ha in N1 in years 1996&ndash;2000. In years 2001&ndash;2003 the corresponding values (50&ndash;130&nbsp;cm) were 24&ndash;104 kg, 43&ndash;130 kg and 29&ndash;94 kg N/ha in treatments N0, N1 and N2, respectively. The uptake from 120&nbsp;(130)&ndash;150 cm was around zero in a half of experimental years, and it reached at maximum 12 kg/ha in N0 in 1997. There was a strong linear relation between the amount of N<sub>min</sub> in spring and the depletion of nitrogen from the zone 50&ndash;120 (130) cm, R<sup>2 </sup>= 0.94, 0.91 and 0.99 in N0, N1 and N2, respectively.


2020 ◽  
Vol 298 ◽  
pp. 106975
Author(s):  
Mirjam Helfrich ◽  
Greta Nicolay ◽  
Reinhard Well ◽  
Caroline Buchen-Tschiskale ◽  
René Dechow ◽  
...  

2011 ◽  
Vol 60 (1) ◽  
pp. 233-244
Author(s):  
László Ködöböcz ◽  
László Róbert Zsíros ◽  
Attila Murányi
Keyword(s):  

A szójaoltás hatékonyságát és az oltóanyagtörzsek gazdanövény specificitását vizsgáltuk csernozjom talajon, szántóföldi körülmények között. A szóját (Glycine max L., Kurca) 80 kg vetőmag/5×1011 CFU arányban oltottuk. Az oltást a vegetációs periódus folyamán mikroelem tápoldattal egészítettük ki. Az eredményeket kezelésenként 5×1 folyóméter növény- és talajminta vizsgálata alapján értékeltük. A mikroszimbionta baktériumtörzsek összehasonlító jellemzését BOX-PCR módszerrel végeztük el. Megállapítottuk, hogy a vizsgált kontrollnövényeken nem volt gümőképződés. A szója magoltása sikeres volt. Az oltóanyagtörzsek infekciós- és N-kötő aktivitása megfelelő volt, növényenként átlagosan 6–7 összetett, aktív gümő képződött. Az oltás hatására a növények száraztömege 25%-kal nőtt. A kiegészítő mikroelem tápoldat nem növelte szignifikánsan a növények száraztömegét és virágszámát. Az oltóanyagban lévő törzsek közül csak egy volt képes hatékony szimbiózist kialakítani a szójával, ami a gazdanövény és mikroszimbionta közötti kapcsolat nagyfokú specificitására utal. Ezt a PCR vizsgálat eredményei is alátámasztották.


2011 ◽  
Vol 60 (1) ◽  
pp. 219-232 ◽  
Author(s):  
Anita Jakab ◽  
János Kátai ◽  
Magdolna Tállai ◽  
Andrea Balláné Kovács

A tenyészedényes kísérletünket a DE AGTC MÉK Agrokémiai és Talajtani Intézet tenyészházában állítottuk be 2010. május 27-én. A kísérletben Debrecen-Látókép környékéről származó mészlepedékes csernozjom vályogtalajt alkalmaztunk, amely az alábbi jellemzőkkel rendelkezett: KA: 37,5; leiszapolható rész: 51%; pH(KCl): 5,5; pH(H2O): 6,6; Hu%: 2,8; AL-P2O5: 140 mg·kg-1; AL-K2O: 316,3 mg·kg-1. Az adatok alapján a kísérleti talaj gyengén savanyú, vályog kötöttségű, közepes nitrogén- és foszfor-, valamint jó kálium-ellátottsággal rendelkezett. A kísérletben kontroll-, műtrágya-, valamint szalmakezelést alkalmaztunk, melyeket bizonyos kombinációkban három különböző baktériumkészítménnyel (Bactofil A, EM-1, Microbion UNC) egészítettünk ki. A kísérletet három ismétlésben véletlenblokk elrendezésben állítottuk be. A tesztnövény angolperje (Lolium perenneL.) volt. A kísérlet kezdetétől számított 8. héten a talaj-, valamint a növényminták begyűjtésére került sor. Meghatároztuk a növényminták száraztömegét, a növény foszfor- és káliumtartalmát, valamint a talajminták nitrát-, valamint AL-oldható foszfor- és káliumtartalmát. Eredményeink alapján főbb megállapításaink a következők: – Az angolperje száraztömegét a műtrágyakezelés szignifikánsan növelte. A hatás a tápelem-ellátottság javulásával magyarázható. – A növény foszforkoncentrációja a műtrágyázás következtében csökkent, amelyet a hígulási effektussal magyarázhatunk. – A növény káliumkoncentrációját a műtrágya-, valamint a műtrágya+baktériumtrágya kezelések szignifikánsan serkentették. – A talaj nitráttartalma szignifikánsan növekedett a műtrágyakezelés kivételével minden kezelésben. – A talaj AL-P2O5-tartalma az NPK-műtrágyázás és az EM-1 kezelés következtében statisztikailag igazolható mértékben megnövekedett, míg az AL-K2O-tartalom kizárólag a szalmakezelés hatására nőtt. A baktériumkészítmények önmagukban alkalmazva általában nem eredményeztek jelentős változást a vizsgált paraméterekben, azonban a készítmények szerves/ásványi anyagokkal kombinált adagolása esetében különböző mértékben befolyásolták a vizsgált mutatókat.


2006 ◽  
Vol 34 (1) ◽  
pp. 621-624 ◽  
Author(s):  
Peter Pepo ◽  
Attila Vad ◽  
Sándor Berényi
Keyword(s):  

1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


2019 ◽  
Vol 446 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Arlete S. Barneze ◽  
Jeanette Whitaker ◽  
Niall P. McNamara ◽  
Nicholas J. Ostle

Abstract Aims Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1482
Author(s):  
Silvia Pampana ◽  
Alessandro Rossi ◽  
Iduna Arduini

Winter cereals are excellent candidates for biosolid application because their nitrogen (N) requirement is high, they are broadly cultivated, and their deep root system efficiently takes up mineral N. However, potential N leaching from BS application can occur in Mediterranean soils. A two-year study was conducted to determine how biosolids affect biomass and grain yield as well as N uptake and N leaching in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. var. durum), and oat (Avena byzantina C. Koch). Cereals were fertilized at rates of 5, 10, and 15 Mg ha−1 dry weight (called B5, B10, and B15, respectively) of biosolids (BS). Mineral-fertilized (MF) and unfertilized (C) controls were included. Overall, results highlight that BS are valuable fertilizers for winter cereals as these showed higher yields with BS as compared to control. Nevertheless, whether 5 Mg ha−1 of biosolids could replace mineral fertilization still depended on the particular cereal due to the different yield physiology of the crops. Moreover, nitrate leaching from B5 was comparable to MF, and B15 increased the risk by less than 30 N-NO3 kg ha−1. We therefore concluded that with specific rate settings, biosolid application can sustain yields of winter cereals without significant additional N leaching as compared to MF.


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


Sign in / Sign up

Export Citation Format

Share Document