High resolution global modeling of the atmospheric circulation

2006 ◽  
Vol 23 (6) ◽  
pp. 842-856 ◽  
Author(s):  
Kevin Hamilton
Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Qing Zhou ◽  
Yong Zhang ◽  
Shuze Jia ◽  
Junli Jin ◽  
Shanshan Lv ◽  
...  

Clouds are significant in the global radiation budget, atmospheric circulation, and hydrological cycle. However, knowledge regarding the observed climatology of the cloud vertical structure (CVS) over Beijing is still poor. Based on high-resolution radiosonde observations at Beijing Nanjiao Weather Observatory (BNWO) during the period 2010–2017, the method for identifying CVS depending on height-resolved relative humidity thresholds is improved, and CVS estimation by radiosonde is compared with observations by millimeter-wave cloud radar and ceilometer at the same site. Good consistency is shown between the three instruments. Then, the CVS climatology, including the frequency distribution and seasonal variation, is investigated. Overall, the occurrence frequency (OF) of cloudy cases in Beijing is slightly higher than that of clear-sky cases, and the cloud OF is highest in summer and lowest in winter. Single-layer clouds and middle-level clouds are dominant in Beijing. In addition, the average cloud top height (CTH), cloud base height (CBH), and cloud thickness in Beijing are 6.2 km, 4.0 km, and 2.2 km, respectively, and show the trend of reaching peaks in spring and minimums in winter. In terms of frequency distribution, the CTH basically resides below an altitude of 16 km, and approximately 43% of the CBHs are located at altitudes of 0.5–1.5 km. The cloud OF has only one peak located at altitudes of 4–8 km in spring, whereas it shows a trimodal distribution in other seasons. The height at which the cloud OF reaches its peak is highest in summer and lowest in winter. To the best of our knowledge, the cloud properties analyzed here are the first to elucidate the distribution and temporal variation of the CVS in Beijing from a long-term sounding perspective, and these results will provide a scientific observation basis for improving the atmospheric circulation model, as well as comparisons and verifications for measurements by ground-based remote sensing equipment.


2020 ◽  
Author(s):  
Joakim Kjellsson ◽  
Wonsun Park ◽  
Torge Martin ◽  
Eric Maisonnave ◽  
Mojib Latif

<p><span>We study how mesoscale air-sea interactions over the North Atlantic can influence weather extremes, e.g. heavy precipitation and wind storms, and the overall atmospheric circulation both locally and downstream in the midlatitudes. We use a global coupled climate model with a high-resolution North Atlantic grid (dx ~ 8 km) and an atmosphere model resolution of either 125 km or 25 km. The high-resolution North Atlantic grid allows the model to resolve the current systems and SST fronts associated with e.g. the Gulf Stream and North Atlantic Current. As air-sea fluxes of momentum, heat and freshwater are calculated on the atmosphere grid, spatial variations in fluxes associated with sharp SST fronts are much better represented when using the high-resolution atmosphere then when using the low-resolution model. </span></p><p> </p><p><span>Preliminary results show that coupling to the high-resolution (dx ~ 25 km) rather than low-resolution (dx ~ 125 km) atmosphere model increases the intensity and variance of surface heat and freshwater fluxes over eddy-rich regions such as the Gulf Stream. As a result, the high-resolution model simulates more intense heavy precipitation events over most of the North Atlantic Ocean. We also show that more frequent coupling between the atmosphere and ocean components increases the intensity of the air-sea fluxes, in particular wind stress, which has a large impact on the ocean. More intense air-sea fluxes can provide more energy for cyclogenesis and we will discuss how the oceanic mesoscale, in particular in the eddy-rich regions, can alter the storm tracks and jet stream to influence extreme weather and the climate over Europe. </span></p><p> </p><p><span>The coupled model comprises NEMO 3.6/LIM2 ocean and OpenIFS 40r1 atmosphere, and works by allowing the global OpenIFS model to send and receive fields from both a global coarse-resolution ocean grid and a refined grid over the North Atlantic grid via the OASIS3-MCT4 coupler. The ability to run these simulations is a very recent development and we will give a brief overview of the coupled modelling system and benefits of using regional grid refinement in coupled models. </span></p><p> </p>


2019 ◽  
Vol 5 (4) ◽  
pp. 390-406 ◽  
Author(s):  
A. Czaja ◽  
C. Frankignoul ◽  
S. Minobe ◽  
B. Vannière

Abstract Purpose of Review To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent Findings Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed.


2014 ◽  
Vol 7 (4) ◽  
pp. 1641-1659 ◽  
Author(s):  
L. M. S. Paiva ◽  
G. C. R. Bodstein ◽  
L. C. G. Pimentel

Abstract. Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation-type data from the European Space Agency (ESA) GlobCover project, and 30 arc-sec leaf area index and fraction of absorbed photosynthetically active radiation data from the ESA GlobCarbon project. Simulations are carried out for the metropolitan area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering three periods of time are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, grid resolution, topographic and land-use databases. Our comparisons show overall good agreement between simulated and observational data, mainly for the potential temperature and the wind speed fields, and clearly indicate that the use of high-resolution databases improves significantly our ability to predict the local atmospheric circulation.


2018 ◽  
Vol 146 (4) ◽  
pp. 1045-1062 ◽  
Author(s):  
Urs Schaefer-Rolffs ◽  
Erich Becker

A new version of the dynamic Smagorinsky model is presented that applies for nonisotropic momentum diffusion in high-resolution atmospheric circulation models. While the horizontal mixing length is computed in accordance with scale invariance in the mesoscale regime of the horizontal energy cascade, the associated dynamic vertical mixing length (DVML) is based on a recently developed scale invariance criterion and represents an application of the scaling laws of stratified macroturbulence. The DVML is validated in high-resolution simulations with the Kühlungsborn mechanistic general circulation model, using triangular spectral truncation at wavenumber 330 and a vertical level spacing of about 200 m in the upper troposphere. For a proper choice of the test filter, the model simulates a realistic horizontal kinetic energy spectrum in the troposphere along with a realistic intensity of the Lorenz energy cycle. This result is obtained without any hyperdiffusion, and it depends only little on whether the vertical mixing length is prescribed or set to the DVML. The globally averaged Smagorinsky parameter is about c S ≅ 0.53. The latitude–height cross sections show that c S maximizes in regions of strong mesoscale kinetic energy.


Sign in / Sign up

Export Citation Format

Share Document