scholarly journals Seasonal Cumulative Effect of Ural Blocking Episodes on the Frequent Cold events in China during the Early Winter of 2020/21

Author(s):  
Yao Yao ◽  
Wenqi Zhang ◽  
Dehai Luo ◽  
Linhao Zhong ◽  
Lin Pei

AbstractStarting in mid-November, China was hit by several cold events during the early winter of 2020/21. The lowest temperature observed at Beijing station on 7 January reached −19.6°C. In this paper, we show that the outbreak of the record-breaking extreme cold event can be attributed to a huge merging Ural blocking (UB) ridge over the Eurasian region. The sea-ice cover in the Kara and East Siberia Seas (KESS) in autumn was at its lowest value since 1979, which could have served as a precursor signal. Further analysis shows that several successive UB episodes occurred from 1 September 2020 to 10 January 2021. The persistent UB that occurred in late September/early October 2020 may have made an important contribution to the October historical minimum of sea ice in the KESS region. Our results also show that, after each UB episode in winter, significant upward propagation of wave activity occurred around 60°E, which resulted in weakening the stratospheric vortex. Meanwhile, each UB episode also caused a significant reduction in sea-ice extent in KESS and a significant weakening of the westerly jet in mid-high-latitude Eurasia. Results suggest that the Arctic vortex, which is supposed to enhance seasonally, became weaker and more unstable than the climatic mean under the seasonal cumulative effects of UB episodes, KESS warming, and long-lasting negative-phase North Atlantic Oscillation (NAO-). Those seasonal cumulative effects, combined with the impact of La Niña winter, led to the frequent occurrence of extreme cold events.

2021 ◽  
Author(s):  
Miao Bi ◽  
Qingquan Li ◽  
Song Yang ◽  
Dong Guo ◽  
Xinyong Shen ◽  
...  

AbstractExtreme cold events (ECEs) on the Tibetan Plateau (TP) exert serious impacts on agriculture and animal husbandry and are important drivers of ecological and environmental changes. We investigate the temporal and spatial characteristics of the ECEs on the TP and the possible effects of Arctic sea ice. The daily observed minimum air temperature at 73 meteorological stations on the TP during 1980–2018 and the BCC_AGCM3_MR model are used. Our results show that the main mode of winter ECEs over the TP exhibits the same spatial variation and interannual variability across the whole region and is affected by two wave trains originating from the Arctic. The southern wave train is controlled by the sea ice in the Beaufort Sea. It initiates in the Norwegian Sea, and then passes through the North Atlantic Ocean, the Arabian Sea, and the Bay of Bengal along the subtropical westerly jet stream. It enters the TP from the south and brings warm, humid air from the oceans. By contrast, the northern wave train is controlled by the sea ice in the Laptev Sea. It originates from the Barents and Kara seas, passes through Lake Baikal, and enters the TP from the north, bringing dry and cold air. A decrease in the sea ice in the Beaufort Sea causes positive potential height anomalies in the Arctic. This change enhances the pressure gradient between the Artic and the mid-latitudes, leading to westerly winds in the northern TP, which block the intrusion of cold air into the south. By contrast, a decrease in the sea ice in the Laptev Sea causes negative potential height anomalies in the Artic. This change reduces the pressure gradient between the Artic and the mid-latitudes, leading to easterly winds to the north of the TP, which favors the southward intrusion of cold polar air. A continuous decrease in the amount of sea ice in the Beaufort Sea would reduce the frequency of ECEs over the TP and further aggravate TP warming in winter.


2019 ◽  
Author(s):  
Mark A. Tschudi ◽  
Walter N. Meier ◽  
J. Scott Stewart

Abstract. A new version of the sea ice motion and age products distributed at the National Snow and Ice Data Center's NASA Snow and Ice Distributed Active Archive Center has been developed. The new version, 4.0, includes several significant upgrades in processing, corrects known issues with the previous version, and updates the time series through 2018, with regular updates planned for the future. Here, we provide a history of the product development, discuss the improvements to the algorithms that create these products, and compare the Version 4 products to the previous version. While Version 4 algorithm changes were significant, the impact on the products is relatively minor, particularly for more recent years. Trends in motion and age are not substantially different between the versions. Changes in sea ice motion and age derived from the product show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice, to a sea ice cover dominated by first-year ice, which is more susceptible to summer melt. We also observe an increase in the speed of the ice in recent years, which is anticipated with the annual decrease in sea ice extent.


2020 ◽  
Author(s):  
Guillaume Boutin ◽  
Timothy Williams ◽  
Pierre Rampal ◽  
Einar Olason ◽  
Camille Lique

<p>The decrease in Arctic sea ice extent is associated with an increase of the area where sea ice and open ocean interact, commonly referred to as the Marginal Ice Zone (MIZ). In this area, sea ice is particularly exposed to waves that can penetrate over tens to hundreds of kilometres into the ice cover. Waves are known to play a major role in the fragmentation of sea ice in the MIZ, and the interactions between wave-induced sea ice fragmentation and lateral melting have received particular attention in recent years. The impact of this fragmentation on sea ice dynamics, however, remains mostly unknown, although it is thought that fragmented sea ice experiences less resistance to deformation than pack ice. In this presentation, we will introduce a new coupled framework involving the spectral wave model WAVEWATCH III and the sea ice model neXtSIM, which includes a Maxwell-Elasto Brittle rheology. We use this coupled modelling system to investigate the potential impact of wave-induced sea ice fragmentation on sea ice dynamics. Focusing on the Barents Sea, we find that the decrease of the internal stress of sea ice resulting from its fragmentation by waves results in a more dynamical MIZ, in particular in areas where sea ice is compact. Sea ice drift is enhanced for both on-ice and off-ice wind conditions. Our results stress the importance of considering wave–sea-ice interactions for forecast applications. They also suggest that waves likely modulate the area of sea ice that is advected away from the pack by ocean (sub-)mesoscale eddies near the ice edge, potentially contributing to the observed past, current and future sea ice cover decline in the Arctic. </p>


2020 ◽  
Author(s):  
Guillaume Boutin ◽  
Timothy Williams ◽  
Pierre Rampal ◽  
Einar Olason ◽  
Camille Lique

Abstract. The decrease in Arctic sea ice extent is associated with an increase of the area where sea ice and open ocean interact, commonly referred to as the Marginal Ice Zone (MIZ). In this area, sea ice is particularly exposed to waves that can penetrate over tens to hundreds of kilometres into the ice cover. Waves are known to play a major role in the fragmentation of sea ice in the MIZ, and the interactions between wave-induced sea ice fragmentation and lateral melting have received particular attention in recent years. The impact of this fragmentation on sea ice dynamics, however, remains mostly unknown, although it is thought that fragmented sea ice experiences less resistance to deformation than pack ice. Here, we introduce a new coupled framework involving the spectral wave model WAVEWATCH III and the sea ice model neXtSIM, which includes a Maxwell-Elasto Brittle rheology. We use this coupled modelling system to investigate the potential impact of wave-induced sea ice fragmentation on sea ice dynamics. Focusing on the Barents Sea, we find that the decrease of the internal stress of sea ice resulting from its fragmentation by waves results in a more dynamical MIZ, in particular in areas where sea ice is compact. Sea ice drift is enhanced for both on-ice and off-ice wind conditions. Our results stress the importance of considering wave–sea-ice interactions for forecast applications. They also suggest that waves likely modulate the area of sea ice that is advected away from the pack by ocean (sub-)mesoscale eddies near the ice edge, potentially contributing to the observed past, current and future sea ice cover decline in the Arctic.


Ocean Science ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 203-217 ◽  
Author(s):  
C. F. Postlethwaite ◽  
M. A. Morales Maqueda ◽  
V. le Fouest ◽  
G. R. Tattersall ◽  
J. Holt ◽  
...  

Abstract. Ocean tides are not explicitly included in many ocean general circulation models, which will therefore omit any interactions between tides and the cryosphere. We present model simulations of the wind and buoyancy driven circulation and tides of the Barents and Kara Seas, using a 25 km × 25 km 3-D ocean circulation model coupled to a dynamic and thermodynamic sea ice model. The modeled tidal amplitudes are compared with tide gauge data and sea ice extent is compared with satellite data. Including tides in the model is found to have little impact on overall sea ice extent but is found to delay freeze up and hasten the onset of melting in tidally active coastal regions. The impact that including tides in the model has on the salt budget is investigated and found to be regionally dependent. The vertically integrated salt budget is dominated by lateral advection. This increases significantly when tides are included in the model in the Pechora Sea and around Svalbard where tides are strong. Tides increase the salt flux from sea ice by 50% in the Pechora and White Seas but have little impact elsewhere. This study suggests that the interaction between ocean tides and sea ice should not be neglected when modeling the Arctic.


Author(s):  
Fei Zheng ◽  
Ji-Ping Liu ◽  
Xiang-Hui Fang ◽  
Mi-Rong Song ◽  
Chao-Yuan Yang ◽  
...  

AbstractSeveral consecutive extreme cold events impacted China during the first half of winter 2020/21, breaking the low-temperature records in many cities. How to make accurate climate predictions of extreme cold events is still an urgent issue. The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes, further influencing the cold conditions in China. However, climate models failed to predict these two ocean environments at expected lead times. Most seasonal climate forecasts only predicted the 2020/21 La Niña after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1–2 month advancement. In this work, the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored. For the 2020/21 La Niña prediction, through sensitivity experiments involving different atmospheric-oceanic initial conditions, the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event. A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Niña development from the early spring of 2020. For predicting the Arctic sea ice loss in autumn 2020, an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model, which swept abnormally hot air over Siberia into the Arctic Ocean, is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.


2014 ◽  
Vol 27 (13) ◽  
pp. 5092-5110 ◽  
Author(s):  
Xiao-Yi Yang ◽  
Xiaojun Yuan

This study reveals that sea ice in the Barents and Kara Seas plays a crucial role in establishing a new Arctic coupled climate system. The early winter sea ice before 1998 shows double dipole patterns over the Arctic peripheral seas. This pattern, referred to as the early winter quadrupole pattern, exhibits the anticlockwise sequential sea ice anomalies propagation from the Greenland Sea to the Barents–Kara Seas and to the Bering Sea from October to December. This early winter in-phase ice variability contrasts to the out-of-phase relationship in late winter. The mean temperature advection and stationary wave heat flux divergence associated with the atmospheric zonal wave-2 pattern are responsible for the early winter in-phase pattern. Since the end of the last century, the early winter quadrupole pattern has broken down because of the rapid decline of sea ice extent in the Barents–Kara Seas. This remarkable ice retreat modifies the local ocean–atmosphere heat exchange, forcing an anomalous low air pressure over the Barents–Kara Seas. The subsequent collapse of the atmospheric zonal wave-2 pattern is likely responsible for the breakdown of the early winter sea ice quadrupole pattern after 1998. Therefore, the sea ice anomalies in the Barents–Kara Seas play a key role in establishing new atmosphere–sea ice coupled relationships in the warming Arctic.


2010 ◽  
Vol 23 (7) ◽  
pp. 1894-1907 ◽  
Author(s):  
Yinghui Liu ◽  
Steven A. Ackerman ◽  
Brent C. Maddux ◽  
Jeffrey R. Key ◽  
Richard A. Frey

Abstract Arctic sea ice extent has decreased dramatically over the last 30 years, and this trend is expected to continue through the twenty-first century. Changes in sea ice extent impact cloud cover, which in turn influences the surface energy budget. Understanding cloud feedback mechanisms requires an accurate determination of cloud cover over the polar regions, which must be obtained from satellite-based measurements. The accuracy of cloud detection using observations from space varies with surface type, complicating any assessment of climate trends as well as the understanding of ice–albedo and cloud–radiative feedback mechanisms. To explore the implications of this dependence on measurement capability, cloud amounts from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared with those from the CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder (CALIPSO) satellites in both daytime and nighttime during the time period from July 2006 to December 2008. MODIS is an imager that makes observations in the solar and infrared spectrum. The active sensors of CloudSat and CALIPSO, a radar and lidar, respectively, provide vertical cloud structures along a narrow curtain. Results clearly indicate that MODIS cloud mask products perform better over open water than over ice. Regional changes in cloud amount from CloudSat/CALIPSO and MODIS are categorized as a function of independent measurements of sea ice concentration (SIC) from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). As SIC increases from 10% to 90%, the mean cloud amounts from MODIS and CloudSat–CALIPSO both decrease; water that is more open is associated with increased cloud amount. However, this dependency on SIC is much stronger for MODIS than for CloudSat–CALIPSO, and is likely due to a low bias in MODIS cloud amount. The implications of this on the surface radiative energy budget using historical satellite measurements are discussed. The quantified ice–water difference in MODIS cloud detection can be used to adjust estimated trends in cloud amount in the presence of changing sea ice cover from an independent dataset. It was found that cloud amount trends in the Arctic might be in error by up to 2.7% per decade. The impact of these errors on the surface net cloud radiative effect (“forcing”) of the Arctic can be significant, as high as 8.5%.


2021 ◽  
Vol 15 (1) ◽  
pp. 431-457
Author(s):  
Guillaume Boutin ◽  
Timothy Williams ◽  
Pierre Rampal ◽  
Einar Olason ◽  
Camille Lique

Abstract. As sea ice extent decreases in the Arctic, surface ocean waves have more time and space to develop and grow, exposing the marginal ice zone (MIZ) to more frequent and more energetic wave events. Waves can fragment the ice cover over tens of kilometres, and the prospect of increasing wave activity has sparked recent interest in the interactions between wave-induced sea ice fragmentation and lateral melting. The impact of this fragmentation on sea ice dynamics, however, remains mostly unknown, although it is thought that fragmented sea ice experiences less resistance to deformation than pack ice. Here, we introduce a new coupled framework involving the spectral wave model WAVEWATCH III and the sea ice model neXtSIM, which includes a Maxwell elasto-brittle rheology. This rheological framework enables the model to efficiently track and keep a “memory” of the level of sea ice damage. We propose that the level of sea ice damage increases when wave-induced fragmentation occurs. We used this coupled modelling system to investigate the potential impact of such a local mechanism on sea ice kinematics. Focusing on the Barents Sea, we found that the internal stress decrease of sea ice resulting from its fragmentation by waves resulted in a more dynamical MIZ, particularly in areas where sea ice is compact. Sea ice drift is enhanced for both on-ice and off-ice wind conditions. Our results stress the importance of considering wave–sea-ice interactions for forecast applications. They also suggest that waves likely modulate the area of sea ice that is advected away from the pack by the ocean, potentially contributing to the observed past, current and future sea ice cover decline in the Arctic.


2020 ◽  
Author(s):  
Byoung Woong An ◽  
Pil-Hun Chang

<p>The Arctic Ocean is globally important for the weather and climate and has a unique environment. Therefore accurate prediction of the Arctic sea ice remains crucial in most numerical models. It is because small changes within the atmosphere or the ocean can cause major changes in the areal extent and thickness of the sea ice. Such changes, in turn, will have pronounced effects on the ocean and atmosphere through modification of the albedo, the ocean-atmosphere heat and momentum exchanges, and the ocean-ice heat and salt fluxes. The focus of this study is on the impact of such coupling on sea ice and upper ocean properties and the halostad related sea ice variations and inflows from Oceans. To assess the impact of the vertical mixing, we perform a set of sensitivity experiments with a global oceanic configuration at 1/4° resolution based on the version 4.0 of NEMO (Nucleus for European Modelling of the Ocean). In particular we examine the spatio-temporal distributions of Pacific and Eastern Arctic origin waters in the Chukchi Sea using 2016-2018 hydrographic data. Overall, the model agrees well with observations in terms of sea ice extent in spite of inaccurate vertical stratification of the water column. We conclude that beyond seasonal time scale forecast accuracy could be improved by more accurate representation of the structure of water masses.</p>


Sign in / Sign up

Export Citation Format

Share Document