scholarly journals Memory of land surface and subsurface temperature (LST/SUBT) initial anomalies over Tibetan Plateau in different land models

2021 ◽  
Author(s):  
Yuan Qiu ◽  
Jinming Feng ◽  
Jun Wang ◽  
Yongkang Xue ◽  
Zhongfeng Xu
2021 ◽  
Author(s):  
Yuan Qiu ◽  
Jinming Feng ◽  
Jun Wang ◽  
Yongkang Xue ◽  
Zhongfeng Xu

Abstract This study applies three widely used land models (SSiB, CLM, and Noah-MP) coupled in a regional climate model to quantitatively assess their skill in preserving the imposed ± 5℃ anomalies on the initial land surface and subsurface temperature (LST/SUBT) and generating the 2-m air temperature (T2m) anomalies over Tibetan Plateau (TP) during May-August. The memory of the LST/SUBT initial anomalies (surface/soil memory) is defined as the first time when time series of the differences in daily LST/SUBT cross the zero line during the simulation, with the unit of days. The memory of the T2m anomalies (T2m memory) is defined in the same way. The ensemble results indicate that the simulated soil memory generally increases with soil depth, which is consistent with the results based on the observations with statistic methods. And the soil memory is found to change rapidly with depth above ~ 0.6-0.7m and vary gradually below it. The land models have fairly long soil memories, with the regional mean 1.0-m soil memory generally longer than 60 days. However, they have short T2m memory, with the regional means generally below 20 days. This may bring a big challenge to use the LST/SUBT approach on sub-seasonal to seasonal (S2S) prediction. Comparison between the three land models shows that CLM and Noah-MP have longer soil memory at the deeper layers ( > ~ 0.05m) while SSiB has longer T2m/surface memories and near-surface (\(\le\)~0.05m) soil memory. As a result, it is difficult to say which land model is optimal for the application of the LST/SUBT approach on the S2S prediction. The T2m/surface/soil memories are various over TP, distinct among the land models, and different between the + 5℃ and − 5℃ experiment, which can be explained by both changes in the surface heat fluxes and variances in the hydrological processes over the plateau.


2017 ◽  
Vol 37 (14) ◽  
pp. 4757-4767 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Zhongbo Su

2018 ◽  
Vol 10 (10) ◽  
pp. 1534 ◽  
Author(s):  
Linan Guo ◽  
Yanhong Wu ◽  
Hongxing Zheng ◽  
Bing Zhang ◽  
Junsheng Li ◽  
...  

In the Tibetan Plateau (TP), the changes of lake ice phenology not only reflect regional climate change, but also impose substantial ecohydrological impacts on the local environment. Due to the limitation of ground observation, remote sensing has been used as an alternative tool to investigate recent changes of lake ice phenology. However, uncertainties exist in the remotely sensed lake ice phenology owing to both the data and methods used. In this paper, three different remotely sensed datasets are used to investigate the lake ice phenology variation in the past decade across the Tibetan Plateau, with the consideration of the underlying uncertainties. The remotely sensed data used include reflectance data, snow product, and land surface temperature (LST) data of moderate resolution imaging spectroradiometer (MODIS). The uncertainties of the three methods based on the corresponding data are assessed using the triple collocation approach. Comparatively, it is found that the method based on reflectance data outperforms the other two methods. The three methods are more consistent in determining the thawing dates rather than the freezing dates of lake ice. It is consistently shown by the three methods that the ice-covering duration in the northern part of the TP lasts longer than that in the south. Though there is no general trend of lake ice phenology across the TP for the period of 2000–2015, the warmer climate and stronger wind have led to the earlier break-up of lake ice.


2020 ◽  
Vol 55 (9-10) ◽  
pp. 2921-2937
Author(s):  
Yanhong Gao ◽  
Fei Chen ◽  
Gonzalo Miguez-Macho ◽  
Xia Li

Abstract The precipitation recycling (PR) ratio is an important indicator that quantifies the land-atmosphere interaction strength in the Earth system’s water cycle. To better understand how the heterogeneous land surface in the Tibetan Plateau (TP) contributes to precipitation, we used the water-vapor tracer (WVT) method coupled with the Weather Research and Forecasting (WRF) regional climate model. The goals were to quantify the PR ratio, in terms of annual mean, seasonal variability and diurnal cycle, and to address the relationships of the PR ratio with lake treatments and precipitation amount. Simulations showed that the PR ratio increases from 0.1 in winter to 0.4 in summer when averaged over the TP with the maxima centered at the headwaters of three major rivers (Yangtze, Yellow and Mekong). For the central TP, the highest PR ratio rose to over 0.8 in August, indicating that most of the precipitation was recycled via local evapotranspiration in summer. The larger daily mean and standard deviation of the PR ratio in summer suggested a stronger effect of land-atmosphere interactions on precipitation in summer than in winter. Despite the relatively small spatial extent of inland lakes, the treatment of lakes in WRF significantly impacted the calculation of the PR ratio over the TP, and correcting lake temperature substantially improved both precipitation and PR ratio simulations. There was no clear relationship between PR ratio and precipitation amount; however, a significant positive correlation between PR and convective precipitation was revealed. This study is beneficial for the understanding of land-atmosphere interaction over high mountain regions.


2020 ◽  
Vol 12 (7) ◽  
pp. 1133
Author(s):  
Yufan Qie ◽  
Ninglian Wang ◽  
Yuwei Wu ◽  
An’an Chen

In the context of global warming, the land surface temperature (LST) from remote sensing data is one of the most useful indicators to directly quantify the degree of climate warming in high-altitude mountainous areas where meteorological observations are sparse. Using the daily Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A1 V6) after eliminating pixels that might be contaminated by clouds, this paper analyzes temporal and spatial variations in the mean LST on the Purog Kangri ice field, Qinghai–Tibetan Plateau, in winter from 2001 to 2018. There was a large increasing trend in LST (0.116 ± 0.05 °C·a−1) on the Purog Kangri ice field during December, while there was no evident LST rising trend in January and February. In December, both the significantly decreased albedo (−0.002 a−1, based on the MOD10A1 V6 albedo product) on the ice field surface and the significantly increased number of clear days (0.322 d·a−1) may be the main reason for the significant warming trend in the ice field. In addition, although the two highest LST of December were observed in 2017 and 2018, a longer data set is needed to determine whether this is an anomaly or a hint of a warmer phase of the Purog Kangri ice field in December.


2020 ◽  
Vol 7 (3) ◽  
pp. 500-515 ◽  
Author(s):  
Yunfei Fu ◽  
Yaoming Ma ◽  
Lei Zhong ◽  
Yuanjian Yang ◽  
Xueliang Guo ◽  
...  

Abstract Correct understanding of the land-surface processes and cloud-precipitation processes in the Tibetan Plateau (TP) is an important prerequisite for the study and forecast of the downstream activities of weather systems and one of the key points for understanding the global atmospheric movement. In order to show the achievements that have been made, this paper reviews the progress on the observations for the atmospheric boundary layer, land-surface heat fluxes, cloud-precipitation distributions and vertical structures by using ground- and space-based multiplatform, multisensor instruments and the effect of the cloud system in the TP on the downstream weather. The results show that the form drag related to the topography, land–atmosphere momentum and scalar fluxes is an important part of the parameterization process. The sensible heat flux decreased especially in the central and northern TP caused by the decrease in wind speeds and the differences in the ground-air temperatures. Observations show that the cloud and precipitation over the TP have a strong diurnal variation. Studies also show the compressed-air column in the troposphere by the higher-altitude terrain of the TP makes particles inside clouds vary at a shorter distance in the vertical direction than those in the non-plateau area so that precipitation intensity over the TP is usually small with short duration, and the vertical structure of the convective precipitation over the TP is obviously different from that in other regions. In addition, the influence of the TP on severe weather downstream is preliminarily understood from the mechanism. It is necessary to use model simulations and observation techniques to reveal the difference between cloud precipitation in the TP and non-plateau areas in order to understand the cloud microphysical parameters over the TP and the processes of the land boundary layer affecting cloud, precipitation and weather in the downstream regions.


Sign in / Sign up

Export Citation Format

Share Document