scholarly journals Global tree-ring response and inferred climate variation following the mid-thirteenth century Samalas eruption

2022 ◽  
Author(s):  
Ulf Büntgen ◽  
Sylvie Hodgson Smith ◽  
Sebastian Wagner ◽  
Paul Krusic ◽  
Jan Esper ◽  
...  

AbstractThe largest explosive volcanic eruption of the Common Era in terms of estimated sulphur yield to the stratosphere was identified in glaciochemical records 40 years ago, and dates to the mid-thirteenth century. Despite eventual attribution to the Samalas (Rinjani) volcano in Indonesia, the eruption date remains uncertain, and the climate response only partially understood. Seeking a more global perspective on summer surface temperature and hydroclimate change following the eruption, we present an analysis of 249 tree-ring chronologies spanning the thirteenth century and representing all continents except Antarctica. Of the 170 predominantly temperature sensitive high-frequency chronologies, the earliest hints of boreal summer cooling are the growth depressions found at sites in the western US and Canada in 1257 CE. If this response is a result of Samalas, it would be consistent with an eruption window of circa May–July 1257 CE. More widespread summer cooling across the mid-latitudes of North America and Eurasia is pronounced in 1258, while records from Scandinavia and Siberia reveal peak cooling in 1259. In contrast to the marked post-Samalas temperature response at high-elevation sites in the Northern Hemisphere, no strong hydroclimatic anomalies emerge from the 79 precipitation-sensitive chronologies. Although our findings remain spatially biased towards the western US and central Europe, and growth-climate response patterns are not always dominated by a single meteorological factor, this study offers a global proxy framework for the evaluation of paleoclimate model simulations.

1995 ◽  
Vol 22 (5) ◽  
pp. 843 ◽  
Author(s):  
YP Wang ◽  
RM Gifford

Kernel growth after anthesis is simulated as a function of the potential kernel growth rate, current photosynthate production and mobilisation of stored reserves. The potential growth rate of the kernel is simulated as two temperature-sensitive processes, cell production and cell growth. The difference between the potential and actual growth rates of the kernel depends on the carbon supply to the free space of the kernel endosperm, while the carbon supply is itself affected by the actual kernel growth rate. Sensitivity analysis showed that the growth rate of the grain per plant is most sensitive to the potential growth rate of the kernel and number of kernels per plant. This model is able to simulate the observed rates of grain growth and leaf senescence from anthesis to physiological maturity for wheat plants grown in two CO2 concentrations. The simulated temperature response of grain growth agrees well with the experimenal observations.


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


2021 ◽  
Author(s):  
Jennifer Kay ◽  
Jason Chalmers

<p>While the long-standing quest to constrain equilibrium climate sensitivity has resulted in intense scrutiny of the processes controlling idealized greenhouse warming, the processes controlling idealized greenhouse cooling have received less attention. Here, differences in the climate response to increased and decreased carbon dioxide concentrations are assessed in state-of-the-art fully coupled climate model experiments. One hundred and fifty years after an imposed instantaneous forcing change, surface global warming from a carbon dioxide doubling (abrupt-2xCO2, 2.43 K) is larger than the surface global cooling from a carbon dioxide halving (abrupt-0p5xCO2, 1.97 K). Both forcing and feedback differences explain these climate response differences. Multiple approaches show the radiative forcing for a carbon dioxide doubling is ~10% larger than for a carbon dioxide halving. In addition, radiative feedbacks are less negative in the doubling experiments than in the halving experiments. Specifically, less negative tropical shortwave cloud feedbacks and more positive subtropical cloud feedbacks lead to more greenhouse 2xCO2 warming than 0.5xCO2 greenhouse cooling. Motivated to directly isolate the influence of cloud feedbacks on these experiments, additional abrupt-2xCO2 and abrupt-0p5xCO2 experiments with disabled cloud-climate feedbacks were run. Comparison of these “cloud-locked” simulations with the original “cloud active” simulations shows cloud feedbacks help explain the nonlinear global surface temperature response to greenhouse warming and greenhouse cooling. Overall, these results demonstrate that both radiative forcing and radiative feedbacks are needed to explain differences in the surface climate response to increased and decreased carbon dioxide concentrations.</p>


2020 ◽  
Vol 16 (3) ◽  
pp. 1061-1074 ◽  
Author(s):  
Jörg Franke ◽  
Veronika Valler ◽  
Stefan Brönnimann ◽  
Raphael Neukom ◽  
Fernando Jaume-Santero

Abstract. Differences between paleoclimatic reconstructions are caused by two factors: the method and the input data. While many studies compare methods, we will focus in this study on the consequences of the input data choice in a state-of-the-art Kalman-filter paleoclimate data assimilation approach. We evaluate reconstruction quality in the 20th century based on three collections of tree-ring records: (1) 54 of the best temperature-sensitive tree-ring chronologies chosen by experts; (2) 415 temperature-sensitive tree-ring records chosen less strictly by regional working groups and statistical screening; (3) 2287 tree-ring series that are not screened for climate sensitivity. The three data sets cover the range from small sample size, small spatial coverage and strict screening for temperature sensitivity to large sample size and spatial coverage but no screening. Additionally, we explore a combination of these data sets plus screening methods to improve the reconstruction quality. A large, unscreened collection generally leads to a poor reconstruction skill. A small expert selection of extratropical Northern Hemisphere records allows for a skillful high-latitude temperature reconstruction but cannot be expected to provide information for other regions and other variables. We achieve the best reconstruction skill across all variables and regions by combining all available input data but rejecting records with insignificant climatic information (p value of regression model >0.05) and removing duplicate records. It is important to use a tree-ring proxy system model that includes both major growth limitations, temperature and moisture.


2021 ◽  
Author(s):  
Anna Cedro ◽  
Grzegorz Nowak

Abstract Common horse-chestnut is frequently infested by the insect pest horse-chestnut leaf miner [HCLM; Cameraria ohridella (Deschka & Dimić, 1986), Gracillariidae, Lepidoptera]. The larvae, feeding on leaf parenchyma, cause browning and dehydration of leaves, which may be shed as early as in summer. The major aims of this study were: (1) to assess the effect of infestation by HCLM on ring-width dynamics in common horse-chestnut; (2) to determine the date of invasion of the pest; and (3) to compare the growth-climate response in the period before and after the invasion of HCLM. In 2017 in north-western Poland, samples from 30 horse-chestnut trees for the dendrochronological analysis were taken with help of a Pressler increment borer. The ring-width chronology was developed using standard dendrochronological methods. Dendroclimatological analyses were made in 2 periods: before the determined date of HCLM invasion (till the year 1999) and after the invasion (in 20002016). In 2000, in spite of favourable weather conditions, a reduced growth rate was observed in 91% of the analysed trees. The period of strong reductions lasted till 2010. Before the invasion, radial growth rate was dependent on temperature and precipitation in May and June of the current year, whereas after the invasion, the growth-climate response was dependent on temperature and precipitation in the preceding year and the correlation was stronger. Surprisingly, in recent years (2011–2016), in spite of infestation by HCLM every year, the health condition of the analysed trees has improved and tree-ring width has increased.


Science ◽  
2019 ◽  
Vol 365 (6458) ◽  
pp. 1124-1129 ◽  
Author(s):  
Andrea C. Encalada ◽  
Alexander S. Flecker ◽  
N. LeRoy Poff ◽  
Esteban Suárez ◽  
Guido A. Herrera-R ◽  
...  

Tropical montane rivers (TMR) are born in tropical mountains, descend through montane forests, and feed major rivers, floodplains, and oceans. They are characterized by rapid temperature clines and varied flow disturbance regimes, both of which promote habitat heterogeneity, high biological diversity and endemism, and distinct organisms’ life-history adaptations. Production, transport, and processing of sediments, nutrients, and carbon are key ecosystem processes connecting high-elevation streams with lowland floodplains, in turn influencing soil fertility and biotic productivity downstream. TMR provide key ecosystem services to hundreds of millions of people in tropical nations. In light of existing human-induced disturbances, including climate change, TMR can be used as natural model systems to examine the effects of rapid changes in abiotic drivers and their influence on biodiversity and ecosystem function.


The Holocene ◽  
2019 ◽  
Vol 29 (11) ◽  
pp. 1817-1830 ◽  
Author(s):  
R Wilson ◽  
K Anchukaitis ◽  
L Andreu-Hayles ◽  
E Cook ◽  
R D’Arrigo ◽  
...  

In north-western North America, the so-called divergence problem (DP) is expressed in tree ring width (RW) as an unstable temperature signal in recent decades. Maximum latewood density (MXD), from the same region, shows minimal evidence of DP. While MXD is a superior proxy for summer temperatures, there are very few long MXD records from North America. Latewood blue intensity (LWB) measures similar wood properties as MXD, expresses a similar climate response, is much cheaper to generate and thereby could provide the means to profoundly expand the extant network of temperature sensitive tree-ring (TR) chronologies in North America. In this study, LWB is measured from 17 white spruce sites ( Picea glauca) in south-western Yukon to test whether LWB is immune to the temporal calibration instabilities observed in RW. A number of detrending methodologies are examined. The strongest calibration results for both RW and LWB are consistently returned using age-dependent spline (ADS) detrending within the signal-free (SF) framework. RW data calibrate best with June–July maximum temperatures (Tmax), explaining up to 28% variance, but all models fail validation and residual analysis. In comparison, LWB calibrates strongly (explaining 43–51% of May–August Tmax) and validates well. The reconstruction extends to 1337 CE, but uncertainties increase substantially before the early 17th century because of low replication. RW-, MXD- and LWB-based summer temperature reconstructions from the Gulf of Alaska, the Wrangell Mountains and Northern Alaska display good agreement at multi-decadal and higher frequencies, but the Yukon LWB reconstruction appears potentially limited in its expression of centennial-scale variation. While LWB improves dendroclimatic calibration, future work must focus on suitably preserved sub-fossil material to increase replication prior to 1650 CE.


2019 ◽  
Vol 54 ◽  
pp. 56-63 ◽  
Author(s):  
Viorica Nagavciuc ◽  
Cătălin-Constantin Roibu ◽  
Monica Ionita ◽  
Andrei Mursa ◽  
Mihai-Gabriel Cotos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document