scholarly journals The role of transient outward K+ current in electrical remodelling induced by voluntary exercise in female rat hearts

2009 ◽  
Vol 104 (6) ◽  
pp. 643-652 ◽  
Author(s):  
Rachel Stones ◽  
Rudolf Billeter ◽  
Henggui Zhang ◽  
Simon Harrison ◽  
Ed White
Circulation ◽  
2000 ◽  
Vol 101 (18) ◽  
pp. 2134-2137 ◽  
Author(s):  
Yoko Eto ◽  
Katsunori Yonekura ◽  
Makoto Sonoda ◽  
Naoto Arai ◽  
Masataka Sata ◽  
...  

1982 ◽  
Vol 92 (1) ◽  
pp. 37-42 ◽  
Author(s):  
H. M. A. MEIJS-ROELOFS ◽  
P. KRAMER ◽  
L. GRIBLING-HEGGE

A possible role of 5α-androstane-3α,17β-diol (3α-androstanediol) in the control of FSH secretion was studied at various ages in ovariectomized rats. In the rat strain used, vaginal opening, coincident with first ovulation, generally occurs between 37 and 42 days of age. If 3α-androstanediol alone was given as an ovarian substitute, an inhibitory effect on FSH release was evident with all three doses tested (50, 100, 300 μg/100 g body wt) between 13 and 30 days of age; at 33–35 days of age only the 300 μg dose caused some inhibition of FSH release. Results were more complex if 3α-androstanediol was given in combined treatment with oestradiol and progesterone. Given with progesterone, 3α-androstanediol showed a synergistic inhibitory action on FSH release between 20 and 30 days of age. However, when 3α-androstanediol was combined with oestradiol a clear decrease in effect, as compared to the effect of oestradiol alone, was found between 20 and 30 days of age. Also the effect of combined oestradiol and progesterone treatment was greater than the effect of combined treatment with oestradiol, progesterone and 3α-androstanediol. At all ages after day 20 none of the steroid combinations tested was capable of maintaining FSH levels in ovariectomized rats similar to those in intact rats. It is concluded that 3α-androstanediol might play a role in the control of FSH secretion in the immature rat, but after day 20 the potentially inhibitory action of 3α-androstanediol on FSH secretion is limited in the presence of oestradiol.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Chetan N Patil ◽  
Carolina Dalmasso ◽  
Rodrigo O Maranon ◽  
Huimin Zhang ◽  
Richard J Roman ◽  
...  

Polycystic ovary syndrome (PCOS) is the most common reproductive disorder in premenopausal women, is characterized by hyperandrogenemia, metabolic syndrome and inflammation. They also exhibit elevated blood pressure (BP) but may not be treated since they do not meet the criteria for hypertension (BP>130/90 mm Hg). We have characterized a female rat model of hyperandrogenemia (HAF) using dihydrotestosterone (DHT) that mimics many characteristics of women with PCOS. In the present study we tested the hypothesis that androgen-induced upregulation of the cytochrome P450 4A2 isoform (CYP4A2) and the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) in renal microvasculature contributes to the elevated BP in HAF rats. Female rats of SS.5BN consomic strain (wild type) rats and CYP4A2-/- rats on this same background were implanted with DHT (7.5mg/90d) or placebo pellets (n=5-8/grp) beginning at 6 wks of age; pellets were changed every 85 d. At 14 wks of age, rats were implanted with radiotelemetry transmitters, and mean arterial pressure (MAP) was measured for 10 days. Endogenous 20-HETE levels were measured using LC-MS in renal microvessels isolated using an Evans Blue sieving technique. DHT-treated HAF-SS.5BN rats had significantly higher MAP compared to placebo-SS.5BN (128±6 vs. 104±1 mmHg, p<0.004). In contrast, HAF-CYP4A2-/- rats had no change in MAP compared to placebo-CYP4A2-/- controls (120±4 vs 118±3 mmHg, p=NS). Endogenous 20-HETE levels in renal microvessels of HAF-SS.5BN rats were significantly increased compared to Placebo-SS.5BN (2.27±0.91 vs. 0.32±0.037 pmol/mg, p<0.01). The 20-HETE levels were lower in CYP4A2-/- than SS.5BN but DHT in HAF-CYP4A2-/- had no effect on 20-HETE levels compared to Placebo- CYP4A2-/-. These results suggest that androgen-mediated upregulation of the expression of CYP4A2 and the production of 20-HETE in renal microvessels contribute to elevated BP in HAF rats. These data also suggest that methods to attenuate 20-HETE may provide a novel therapeutic to reduce BP in women with PCOS. Work supported by NIH RO1HL66072 and PO1HL51971.


1991 ◽  
Vol 260 (3) ◽  
pp. H877-H883 ◽  
Author(s):  
M. R. Prasad ◽  
L. M. Popescu ◽  
I. I. Moraru ◽  
X. K. Liu ◽  
S. Maity ◽  
...  

We investigated the role of phospholipase A2 (PLA2) and phospholipase C (PLC) in myocardial phosholipid degradation and cellular injury during reperfusion of ischemic myocardium. For this purpose, isolated rat hearts were perfused with isotopic arachidonic acid to label its membrane phospholipids. Hearts preperfused with antiphospholipase A2 (anti-PLA2) retained a significantly higher amount of radiolabel in phosphatidylcholine and phosphatidylinositol and a corresponding lower amount of radiolabel in lysophosphatidylcholine and nonesterified fatty acids (P less than 0.05) after 30 min of reperfusion following 30 min of normothermic global ischemia compared with hearts preperfused with nonimmune immunoglobulin G. In similar experiments, antiphospholipase C (anti-PLC)-treated hearts were associated with significantly (P less than 0.05) higher radiolabel in all phospholipids and lower radiolabel in diacyglycerol compared with nonimmune immunoglobulin G-treated hearts. Measurement of phospholipase activity in subcellular organelles of these hearts showed decreased PLA2 activity in cytosol, mitochondria, and microsomes of anti-PLA2-treated hearts and decreased PLC activity of microsomes in anti-PLC-treated hearts. Furthermore, both the antiphospholipases attenuated the release of creatine kinase and lactate dehydrogenase into perfusate and increased contractility as well as coronary flow in the reperfused hearts. Results of this study suggest that both PLA2 and PLC are involved in the degradation of phospholipids and cellular injury that occur during reperfusion of ischemic myocardium.


1997 ◽  
Vol 272 (3) ◽  
pp. H1333-H1341 ◽  
Author(s):  
M. X. He ◽  
S. Wang ◽  
H. F. Downey

To test the role of inorganic phosphate (Pi) in downregulation of myocardial contractile force at the onset of ischemia, Pi of rat hearts was determined with 31P nuclear magnetic resonance spectroscopy. Forty cycles of brief hypoperfusion (30% of baseline flow for 33 s) were used to achieve a time resolution of 0.512 s for comparing dynamic changes in Pi and contractile force. Initial control values of left ventricular developed pressure (LVP), heart rate, and oxygen consumption were 136 +/- 11 mmHg, 236 +/- 4 beats/min, and 95 +/- 3 microl O2 x min(-1) x g(-1); these values were unchanged at the end of the experiment. During the first 10 s of hypoperfusion, Pi increased at a rate (percentage of the total observed change) faster than the decrease in LVP; Pi and LVP then changed at the same rate during the remainder of the hypoperfusion. ADP did not change in advance of LVP. Intracellular pH did not change. The results indicate that Pi plays an important role in initiating the downregulation of myocardial contractile force at the onset of ischemia. Perfusion pressure also declined faster than LVP at the onset of ischemia, indicating potential importance of vascular collapse in contractile downregulation during early ischemia.


Sign in / Sign up

Export Citation Format

Share Document