scholarly journals Macroscopic rheology of non-Brownian suspensions at high shear rates: the influence of solid volume fraction and non-Newtonian behaviour of the liquid phase

2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jörg Hinrichs ◽  
Reinhard Kohlus

AbstractModelling the macroscopic rheology of non-Brownian suspensions is complicated by the non-linear behaviour that originates from the interaction between solid particles and the liquid phase. In this contribution, a model is presented that describes suspension rheology as a function of solid volume fraction and shear rate dependency of both the liquid phase, as well as the suspension as a whole. It is experimentally validated using rotational rheometry ($$\varphi$$ φ ≤ 0.40) and capillary rheometry (0.55 ≤ $$\varphi$$ φ  ≤ 0.60) at shear rates > 50 s−1. A modified Krieger-Dougherty relation was used to describe the influence of solid volume fraction on the consistency coefficient, $$K$$ K , and was fitted to suspensions with a shear thinning liquid phase, i.e. having a flow index, $$n$$ n , of 0.50. With the calculated fit parameters, it was possible to predict the consistency coefficients of suspensions with a large variation in the shear rate dependency of the liquid phase ($$n$$ n = 0.20–1.00). With increasing solid volume fraction, the flow indices of the suspensions were found to decrease for Newtonian and mildly shear thinning liquid phases ($$n$$ n ≥0.50), whereas they were found to increase for strongly shear thinning liquid phases ($$n$$ n ≤0.27). It is hypothesized that this is related to interparticle friction and the relative contribution of friction forces to the viscosity of the suspension. The proposed model is a step towards the prediction of the flow curves of concentrated suspensions with non-Newtonian liquid phases at high shear rates.

1992 ◽  
Vol 289 ◽  
Author(s):  
John R. Melrose

AbstractAn overview is given of theories of aggregates under flow. These generally assume some sort of structural breakdown as the shear rate is increased. Models vary with both the rigidity of the bonding and the level of treatment of hydrodynamics. Results are presented for simulations of a Rouse model of non-rigid, (i.e. central force) weakly bonded aggregates. In large scale simulations different structures are observed at low and high shear rates. The change from one structure to another is associated with a change in the rate of shear thinning. The model captures low shear rate features of real systems absent in previous models: this feature is ascribed to agglomerate deformations. Quantitatively, the model is two orders of magnitude out from experiment but some scaling is possible.


2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jan Wieringa ◽  
Theo Blijdenstein ◽  
Kees van Malssen ◽  
Reinhard Kohlus

AbstractThe rheological characterization of concentrated suspensions is complicated by the heterogeneous nature of their flow. In this contribution, the shear viscosity and wall slip velocity are quantified for highly concentrated suspensions (solid volume fractions of 0.55–0.60, D4,3 ~ 5 µm). The shear viscosity was determined using a high-pressure capillary rheometer equipped with a 3D-printed die that has a grooved surface of the internal flow channel. The wall slip velocity was then calculated from the difference between the apparent shear rates through a rough and smooth die, at identical wall shear stress. The influence of liquid phase rheology on the wall slip velocity was investigated by using different thickeners, resulting in different degrees of shear rate dependency, i.e. the flow indices varied between 0.20 and 1.00. The wall slip velocity scaled with the flow index of the liquid phase at a solid volume fraction of 0.60 and showed increasingly large deviations with decreasing solid volume fraction. It is hypothesized that these deviations are related to shear-induced migration of solids and macromolecules due to the large shear stress and shear rate gradients.


2011 ◽  
Vol 106 (12) ◽  
pp. 1062-1068 ◽  
Author(s):  
Naoki Tsuji ◽  
Yuko Honda ◽  
Chikako Kamisato ◽  
Yoshiyuki Morishima ◽  
Toshiro Shibano ◽  
...  

SummaryEdoxaban is an oral, direct factor Xa (FXa) inhibitor under late-phase clinical development. This study compared the antithrombotic efficacy of edoxaban with that of an indirect FXa inhibitor, fondaparinux, in in vivo venous and arterial thrombosis models and in ex vivo perfusion chamber thrombosis model under low and high shear rates in rats. Venous and arterial thrombi were induced by platinum wire insertion into the inferior vena cava and by application of FeCl3 to the carotid artery, respectively. The perfusion chamber thrombus was formed by blood perfusion into a collagen-coated capillary at 150 s-1 (low shear rate) and 1,600 s-1 (high shear rate). Effective doses of edoxaban that reduced thrombus formation by 50% (ED50) in venous and arterial thrombosis models were 0.076 and 0.093 mg/kg/h, respectively. In contrast, ED50 of fondaparinux in the arterial thrombosis model (>10 mg/kg/h) was markedly higher compared to ED50 in the venous thrombosis model (0.021 mg/kg/h). In the perfusion chamber thrombosis model, the ratio of ED50 under high shear rate (1.13 mg/kg/h) to that under low shear rate (0.63 mg/kg/h) for edoxaban was 1.9, whereas that for fondaparinux was more than 66. While the efficacy of fondaparinux markedly decreased in arterial thrombosis and in a high-shear state, edoxaban exerted consistent antithrombotic effects regardless of flow conditions. These results suggest that shear rate is a key factor in different antithrombotic effects between edoxaban and fondaparinux.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1214-1217
Author(s):  
E Fressinaud ◽  
D Baruch ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of labeled washed platelets and plasma from controls or five patients with severe von Willebrand disease (vWD), was perfused through the chamber for five minutes at a shear rate of 1,600 s-1. Platelet-collagen interactions were estimated by counting the radioactivity in deposited platelets and by quantitative morphometry. When the perfusate consisted of normal platelets suspended in normal plasma, platelet deposition on the collagen was 24.7 +/- 3.6 X 10(6)/cm2 (mean +/- SEM, n = 6). Significantly less deposition (16 +/- 2.3) was observed when vWD platelets were substituted for normal platelets. In mixtures containing vWD plasma, significantly greater deposition (9 +/- 2.2) was obtained with normal than with vWD platelets (1 +/- 0.4) demonstrating a role for platelet vWF in mediating the deposition of platelets on collagen. Morphometric analysis confirmed these data. Our findings indicate that platelet, as well as plasma, vWF mediates platelet-collagen interactions at a high shear rate.


2017 ◽  
Vol 830 ◽  
pp. 93-137 ◽  
Author(s):  
S. Hormozi ◽  
I. A. Frigaard

Solids dispersion is an important part of hydraulic fracturing, both in helping to understand phenomena such as tip screen-out and spreading of the pad, and in new process variations such as cyclic pumping of proppant. Whereas many frac fluids have low viscosity, e.g. slickwater, others transport proppant through increased viscosity. In this context, one method for influencing both dispersion and solids-carrying capacity is to use a yield stress fluid as the frac fluid. We propose a model framework for this scenario and analyse one of the simplifications. A key effect of including a yield stress is to focus high shear rates near the fracture walls. In typical fracturing flows this results in a large variation in shear rates across the fracture. In using shear-thinning viscous frac fluids, flows may vary significantly on the particle scale, from Stokesian behaviour to inertial behaviour across the width of the fracture. Equally, according to the flow rates, Hele-Shaw style models give way at higher Reynolds number to those in which inertia must be considered. We develop a model framework able to include this range of flows, while still representing a significant simplification over fully three-dimensional computations. In relatively straight fractures and for fluids of moderate rheology, this simplifies into a one-dimensional model that predicts the solids concentration along a streamline within the fracture. We use this model to make estimates of the streamwise dispersion in various relevant scenarios. This model framework also predicts the transverse distributions of the solid volume fraction and velocity profiles as well as their evolutions along the flow part.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1622
Author(s):  
Sahr Sana ◽  
Vladimir Zivkovic ◽  
Kamelia Boodhoo

Spinning disc technology is capable of achieving intensified micromixing within thin liquid films created through large shear rates, typically of the order of 103 s−1, generated by means of fast disc surface rotation. In this study the effect of the high shear on solvent–antisolvent mixing and starch nanoparticle precipitation is reported. Rheological studies of starch solutions at 2% w/v and 4% w/v have demonstrated their shear-thinning behaviour at the large shear rates experienced on the spinning disc surface. The effect of such high shear rate on starch nanoparticle precipitation is investigated alongside solute concentration and several other operating parameters such as flow rate, disc rotational speed, and solvent/antisolvent ratio. A reduction in nanoparticle size has been observed with an increase in starch concentration, although agglomeration was found to be more prevalent amongst these smaller particles particularly at larger flow rates and disc rotational speeds. Micromixing time, estimated on the basis of an engulfment mechanism, has been correlated against shear rate. With fast micromixing of the order of 1 ms observed at higher shear rates, and which are practically unaffected by the starch concentrations used, micromixing is not thought to be influential in determining the particle characteristics highlighted in this work.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 100 ◽  
Author(s):  
F. Borras ◽  
Matthijn de Rooij ◽  
Dik Schipper

The use of Environmentally Acceptable Lubricants (EALs) for stern tube lubrication is increasing. Although the machine components of a sailing vessel are designed to operate together with mineral oil-based lubricants, these are being replaced by the less environmentally harmful EALs. Little is known about the rheological performance of EALs in particular at the high shear rates that occur in stern tube seals. In this study, the viscosity and wetting properties of a set of different EALs is analysed and compared to traditional mineral oil-based lubricants using a set of experimental techniques. Some of the EALs present Newtonian behavior whereas other show shear thinning. No significant difference in surface tension was observed between the different lubricants.


2014 ◽  
Vol 53 (3) ◽  
pp. 555-567 ◽  
Author(s):  
Shintaro Itoh ◽  
Koki Ishii ◽  
Kenji Fukuzawa ◽  
Hedong Zhang

2010 ◽  
Vol 105-106 ◽  
pp. 833-836
Author(s):  
Xiang Yang Lu ◽  
Li Ming Zhang ◽  
Yong Huang

The rheological behavior of alumina suspension stabilized with Tri-ammonia citrate (TAC) was studied. It was thought that there would form some particle clusters due to the collisions between particles caused by their relative motion in the suspension, and such particle clusters are classified as thermodynamic clusters and hydrodynamic clusters by their origin. Shear thinning is the result of decomposition of the thermodynamic clusters, while shear thickening is the result of formation of the hydrodynamic clusters. From the view of cluster-forming potential barrier, it was deemed that the viscosities of alumina suspensions at low and high shear rates are respectively determined by zeta potential and Stern potential on the particle surface, and shear thickening behavior can be suppressed with some excessive TAC.


2004 ◽  
Vol 70 (12) ◽  
pp. 7426-7435 ◽  
Author(s):  
Alexander H. Rickard ◽  
Andrew J. McBain ◽  
Amy T. Stead ◽  
Peter Gilbert

ABSTRACT The development of freshwater multispecies biofilms at solid-liquid interfaces occurs both in quiescent waters and under conditions of high shear rates. However, the influence of hydrodynamic shear rates on bacterial biofilm diversity is poorly understood. We hypothesized that different shear rates would significantly influence biofilm diversity and alter the relative proportions of coaggregating and autoaggregating community isolates. In order to study this hypothesis, freshwater biofilms were developed at five shear rates (<0.1 to 305 S−1) in a rotating concentric cylinder reactor fed with untreated potable water. Eubacterial diversity was assessed by denaturing gradient gel electrophoresis (DGGE) and culturing on R2A agar. Fifty morphologically distinct biofilm strains and 16 planktonic strains were isolated by culturing and identified by partial 16S rRNA gene sequencing, and their relatedness was determined by the construction of a neighbor-joining phylogenetic tree. Phylogenetic and DGGE analyses showed an inverse relationship between shear rate and bacterial diversity. An in vitro aggregation assay was used to assess the relative proportions of coaggregating and autoaggregating species from each biofilm. The highest proportion of autoaggregating bacteria was present at high shear rates (198 to 305 S−1). The intermediate shear rate (122 S−1) selected for the highest proportion of coaggregating bacteria (47%, or 17 of a possible 36 coaggregation interactions). Under static conditions (<0.1 S−1), 41 (33%) of a possible 125 coaggregation interactions were positive. Few coaggregation (3.3%) or autoaggregation (25%) interactions occurred between the 16 planktonic strains. In conclusion, these data show that shear rates affect biofilm diversity as well as the relative proportions of aggregating bacteria.


Sign in / Sign up

Export Citation Format

Share Document