scholarly journals Shear-Thinning Effect of the Spinning Disc Mixer on Starch Nanoparticle Precipitation

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1622
Author(s):  
Sahr Sana ◽  
Vladimir Zivkovic ◽  
Kamelia Boodhoo

Spinning disc technology is capable of achieving intensified micromixing within thin liquid films created through large shear rates, typically of the order of 103 s−1, generated by means of fast disc surface rotation. In this study the effect of the high shear on solvent–antisolvent mixing and starch nanoparticle precipitation is reported. Rheological studies of starch solutions at 2% w/v and 4% w/v have demonstrated their shear-thinning behaviour at the large shear rates experienced on the spinning disc surface. The effect of such high shear rate on starch nanoparticle precipitation is investigated alongside solute concentration and several other operating parameters such as flow rate, disc rotational speed, and solvent/antisolvent ratio. A reduction in nanoparticle size has been observed with an increase in starch concentration, although agglomeration was found to be more prevalent amongst these smaller particles particularly at larger flow rates and disc rotational speeds. Micromixing time, estimated on the basis of an engulfment mechanism, has been correlated against shear rate. With fast micromixing of the order of 1 ms observed at higher shear rates, and which are practically unaffected by the starch concentrations used, micromixing is not thought to be influential in determining the particle characteristics highlighted in this work.

1992 ◽  
Vol 289 ◽  
Author(s):  
John R. Melrose

AbstractAn overview is given of theories of aggregates under flow. These generally assume some sort of structural breakdown as the shear rate is increased. Models vary with both the rigidity of the bonding and the level of treatment of hydrodynamics. Results are presented for simulations of a Rouse model of non-rigid, (i.e. central force) weakly bonded aggregates. In large scale simulations different structures are observed at low and high shear rates. The change from one structure to another is associated with a change in the rate of shear thinning. The model captures low shear rate features of real systems absent in previous models: this feature is ascribed to agglomerate deformations. Quantitatively, the model is two orders of magnitude out from experiment but some scaling is possible.


2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jörg Hinrichs ◽  
Reinhard Kohlus

AbstractModelling the macroscopic rheology of non-Brownian suspensions is complicated by the non-linear behaviour that originates from the interaction between solid particles and the liquid phase. In this contribution, a model is presented that describes suspension rheology as a function of solid volume fraction and shear rate dependency of both the liquid phase, as well as the suspension as a whole. It is experimentally validated using rotational rheometry ($$\varphi$$ φ ≤ 0.40) and capillary rheometry (0.55 ≤ $$\varphi$$ φ  ≤ 0.60) at shear rates > 50 s−1. A modified Krieger-Dougherty relation was used to describe the influence of solid volume fraction on the consistency coefficient, $$K$$ K , and was fitted to suspensions with a shear thinning liquid phase, i.e. having a flow index, $$n$$ n , of 0.50. With the calculated fit parameters, it was possible to predict the consistency coefficients of suspensions with a large variation in the shear rate dependency of the liquid phase ($$n$$ n = 0.20–1.00). With increasing solid volume fraction, the flow indices of the suspensions were found to decrease for Newtonian and mildly shear thinning liquid phases ($$n$$ n ≥0.50), whereas they were found to increase for strongly shear thinning liquid phases ($$n$$ n ≤0.27). It is hypothesized that this is related to interparticle friction and the relative contribution of friction forces to the viscosity of the suspension. The proposed model is a step towards the prediction of the flow curves of concentrated suspensions with non-Newtonian liquid phases at high shear rates.


2011 ◽  
Vol 106 (12) ◽  
pp. 1062-1068 ◽  
Author(s):  
Naoki Tsuji ◽  
Yuko Honda ◽  
Chikako Kamisato ◽  
Yoshiyuki Morishima ◽  
Toshiro Shibano ◽  
...  

SummaryEdoxaban is an oral, direct factor Xa (FXa) inhibitor under late-phase clinical development. This study compared the antithrombotic efficacy of edoxaban with that of an indirect FXa inhibitor, fondaparinux, in in vivo venous and arterial thrombosis models and in ex vivo perfusion chamber thrombosis model under low and high shear rates in rats. Venous and arterial thrombi were induced by platinum wire insertion into the inferior vena cava and by application of FeCl3 to the carotid artery, respectively. The perfusion chamber thrombus was formed by blood perfusion into a collagen-coated capillary at 150 s-1 (low shear rate) and 1,600 s-1 (high shear rate). Effective doses of edoxaban that reduced thrombus formation by 50% (ED50) in venous and arterial thrombosis models were 0.076 and 0.093 mg/kg/h, respectively. In contrast, ED50 of fondaparinux in the arterial thrombosis model (>10 mg/kg/h) was markedly higher compared to ED50 in the venous thrombosis model (0.021 mg/kg/h). In the perfusion chamber thrombosis model, the ratio of ED50 under high shear rate (1.13 mg/kg/h) to that under low shear rate (0.63 mg/kg/h) for edoxaban was 1.9, whereas that for fondaparinux was more than 66. While the efficacy of fondaparinux markedly decreased in arterial thrombosis and in a high-shear state, edoxaban exerted consistent antithrombotic effects regardless of flow conditions. These results suggest that shear rate is a key factor in different antithrombotic effects between edoxaban and fondaparinux.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1214-1217
Author(s):  
E Fressinaud ◽  
D Baruch ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of labeled washed platelets and plasma from controls or five patients with severe von Willebrand disease (vWD), was perfused through the chamber for five minutes at a shear rate of 1,600 s-1. Platelet-collagen interactions were estimated by counting the radioactivity in deposited platelets and by quantitative morphometry. When the perfusate consisted of normal platelets suspended in normal plasma, platelet deposition on the collagen was 24.7 +/- 3.6 X 10(6)/cm2 (mean +/- SEM, n = 6). Significantly less deposition (16 +/- 2.3) was observed when vWD platelets were substituted for normal platelets. In mixtures containing vWD plasma, significantly greater deposition (9 +/- 2.2) was obtained with normal than with vWD platelets (1 +/- 0.4) demonstrating a role for platelet vWF in mediating the deposition of platelets on collagen. Morphometric analysis confirmed these data. Our findings indicate that platelet, as well as plasma, vWF mediates platelet-collagen interactions at a high shear rate.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jia Zhang ◽  
Shiqing Cheng ◽  
Jie Zhan ◽  
Qi Han

Viscoelastic polymer solution shows shear thinning behavior at low shear rates and shear thickening behavior at high shear rates in reservoirs. However, models that ignored shear thickening behavior were commonly employed to interpret transient pressure data derived from tested wells in viscoelastic polymer flooding systems; although, viscoelastic polymer solutions show shear thickening behavior in the near-wellbore region due to high shear rate. To better characterize the oilfield with pressure transient analysis in viscoelastic polymer flooding systems, we developed a numerical model that takes into account both shear thinning behavior and shear thickening behavior. A finite volume method was employed to discretize partially differential flow equations in a hybrid grid system including PEBI mesh and Cartesian grid, and the Newton-Raphson method was used to solve the fully implicit nonlinear system. To illustrate the significance of our model, we compared our model with a model that ignores the shear thickening behavior by graphing their solutions on log-log plots. In the flow regime of near-wellbore damage, the pressure derivative computed by our model is distinctly larger than that computed by the model ignoring shear thickening behavior. Furthermore, the effect of shear thickening behavior on pressure derivative differs from that of near-wellbore damage. We then investigated the influence of shear thickening behavior on pressure derivative with different polymer injection rates, injection rates, and permeabilities. The results can provide a benchmark to better estimate near-wellbore damage in viscoelastic polymer flooding systems. Besides, we demonstrated the applicability and accuracy of our model by interpreting transient pressure data from a field case in an oilfield with viscoelastic polymer flooding treatments.


2021 ◽  
Vol 15 (3) ◽  
pp. 181-190
Author(s):  
Elif H Ozcan Cetin ◽  
Mehmet S Cetin ◽  
Mustafa B Ozbay ◽  
Hasan C Könte ◽  
Nezaket M Yaman ◽  
...  

Aim: We aimed to assess the association of whole blood with thromboembolic milieu in significant mitral stenosis patients. Methodology & results: We included 122 patients and classified patients into two groups as having thrombogenic milieu, thrombogenic milieu (+), otherwise patients without thrombogenic milieu, thrombogenic milieu (-). Whole blood viscosity (WBV) in both shear rates were higher in thrombogenic milieu (+) group comparing with thrombogenic milieu (-). WBV at high shear rate and WBV at low shear rate parameters were moderately correlated with grade of spontaneous echo contrast. Adjusted with other parameters, WBV parameters at both shear rates were associated with presence of thrombogenic milieu. Discussion & conclusion: We found that extrapolated WBV at both shear rates was significantly associated with the thrombogenic milieu in mitral stenosis. This easily available parameter may provide additional perspective about thrombogenic diathesis.


1976 ◽  
Vol 55 (3) ◽  
pp. 353-356 ◽  
Author(s):  
M. Braden ◽  
Ratna Perera

Six commercial fluoride gels have been studied, using a cone and plate viscometer. Also, the thickening agents have been analyzed using infrared spectroscopy. All gels showed stress thinning, which is the decrease of viscosity with shear rate. Such shear rate dependence is clinically convenient in that the gel will flow readily at the high shear stresses present when the gel is applied but will not flow readily under its own weight when on the tooth. Five materials containing hydroxyalkyl celluloses showed similar degrees of shear thinning. One material with a non-cellulosic thickener showed much more extreme stress thinning together with elastic behavior at low shear rates; such behavior may be clinically advantageous. All of the gels showed only slight temperature dependence of rheological properties.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 100 ◽  
Author(s):  
F. Borras ◽  
Matthijn de Rooij ◽  
Dik Schipper

The use of Environmentally Acceptable Lubricants (EALs) for stern tube lubrication is increasing. Although the machine components of a sailing vessel are designed to operate together with mineral oil-based lubricants, these are being replaced by the less environmentally harmful EALs. Little is known about the rheological performance of EALs in particular at the high shear rates that occur in stern tube seals. In this study, the viscosity and wetting properties of a set of different EALs is analysed and compared to traditional mineral oil-based lubricants using a set of experimental techniques. Some of the EALs present Newtonian behavior whereas other show shear thinning. No significant difference in surface tension was observed between the different lubricants.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3300-3300
Author(s):  
Reginald Tran ◽  
Byungwook AHN ◽  
David R Myers ◽  
Yongzhi Qiu ◽  
Yumiko Sakurai

Abstract Abstract 3300 Background: Hemostasis is an important physiologic process that requires the aggregation of platelets at distinct sites of vascular injury to promote clot formation and prevent blood loss. Platelet response to soluble agonists and shear stress has been studied extensively, but little is known of how microenvironmental geometry affects platelet function. As platelets must quickly adhere to, aggregate, and initiate coagulation only at the affected areas, spatial cues must at some level regulate this process. This aspect of spatial regulation has been investigated under static conditions by our group and others (Kita et al., 2011; Van de Walle et al., 2012). Understanding this aspect of platelet function is vital for better understanding the process of hemostasis and pathophysiological conditions such as thrombosis. Here, we directly examine how spatial cues affect platelet aggregation and physiology under variable shear conditions by flowing heparinized whole blood over micropatterned collagen in a microfluidic channel. This system allows us to assess platelet aggregate morphology under different geometric constraints and shear rates, as well as evaluate platelet physiology at the single cell level by measuring calcium signaling using fluorogenic dyes. Results: A microfluidic channel was bonded to a glass coverslip stamped with FITC-conjugated Type I collagen using a novel technique combining microcontact printing and the stamp-stick bonding technique (Satyanarayana et al., 2005). Before flowing, each chamber was incubated with 1% bovine serum albumin (BSA) blocking solution for 1.5 hours. Whole heparinized blood was then flowed through the chamber at shear rates of 100, 1000, and 10000 s−1. Platelets were labeled with Fura Red, and time lapse confocal imaging was performed for 10 minutes to monitor the aggregation of platelets at the start of flow. The flow chambers were then flushed with Tyrode's buffer with 0.1% BSA using the same experimental shear rates until the chamber was cleared of red blood cells. Image analysis was conducted using ImageJ (to calculate the percentage of platelet coverage on the collagen stamps at different shear rates. Platelets initially adhere to the distal edge of the collagen micropatterns for all shear rates (Fig. 1), indicating that platelets may require a priming region before forming a stable adhesion. As shear rate increased, platelet coverage of the collagen stamps decreased. However, aggregates also grew without conforming to the geometric constraints imposed by the collagen micropatterns more frequently at those higher shear rates (Fig. 1). Though platelet tethers generally aligned in the direction of the flow, increased tether lengths could be seen when platelets were exposed to higher shear, which may explain why platelets were able to span larger gaps and aggregate in a less spatially constrained manner at high shear rates. Image analysis shows that 51.5% of the collagen was covered by platelet aggregates for a shear rate of 100 s−1 with some platelets forming tethers to span gaps (Fig. 2). When the shear rate was increased to 1000 s−1, platelet coverage of the collagen microstamp drastically dropped to 18.5% (Fig. 2). At a pathophysiological shear rate of 10000 s−1, the percentage of collagen covered by platelets dropped further to 12.8% and adopted a linear shape, although a large portion of the aggregate can be seen spanning gaps between the collagen microstamp (Fig. 1 and 2). Conclusions and Ongoing Efforts: Ours is the first reported study of the spatial regulation of platelet aggregation under variable shear in a microfluidic channel. We have found that platelets are more spatially regulated under low shear conditions compared to high shear, which has implications for thrombosis and other clotting disorders. Future studies will incorporate the simultaneous use of ratiometric fluorgenic calcium signaling dyes to investigate the role of spatial regulation in Ca2+ signaling. Finally, we have developed a method to culture endothelial cells around a collagen micropattern to study this spatial regulation of platelet function under more physiological conditions (Fig. 3). Disclosures: No relevant conflicts of interest to declare.


1989 ◽  
Vol 13 (2) ◽  
pp. 97-102 ◽  
Author(s):  
B. B. Gupta ◽  
L. H. Ding ◽  
M. Y. Jaffrin

Sign in / Sign up

Export Citation Format

Share Document