scholarly journals Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites

Author(s):  
Jacqueline M. Tokarew ◽  
Daniel N. El-Kodsi ◽  
Nathalie A. Lengacher ◽  
Travis K. Fehr ◽  
Angela P. Nguyen ◽  
...  

AbstractThe mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. We hypothesized that parkin cysteines participate in redox reactions and that these are reflected in its posttranslational modifications. We found that in post mortem human brain, including in the Substantia nigra, parkin is largely insoluble after age 40 years; this transition is linked to its oxidation, such as at residues Cys95 and Cys253. In mice, oxidative stress induces posttranslational modifications of parkin cysteines that lower its solubility in vivo. Similarly, oxidation of recombinant parkin by hydrogen peroxide (H2O2) promotes its insolubility and aggregate formation, and in exchange leads to the reduction of H2O2. This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. In prkn-null mice, H2O2 levels are increased under oxidative stress conditions, such as acutely by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin exposure or chronically due to a second, genetic hit; H2O2 levels are also significantly increased in parkin-deficient human brain. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminergic cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct formation, which occurs foremost at the primate-specific residue Cys95. Further, wild-type but not p.C95A-mutant parkin augments melanin formation in vitro. By probing sections of adult, human midbrain from control individuals with epitope-mapped, monoclonal antibodies, we found specific and robust parkin reactivity that co-localizes with neuromelanin pigment, frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration of radicals within insoluble aggregates, and increased melanin formation. The loss of these complementary redox effects may augment oxidative stress during ageing in dopamine-producing cells of mutant PRKN allele carriers, thereby enhancing the risk of Parkinson’s-linked neurodegeneration.

2020 ◽  
Author(s):  
Jacqueline M. Tokarew ◽  
Daniel N. El-Kodsi ◽  
Nathalie A. Lengacher ◽  
Travis K. Fehr ◽  
Angela P. Nguyen ◽  
...  

AbstractThe mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. We hypothesized that parkin cysteines participate in redox reactions, which are reflected in its posttranslational modifications. We found that in human control brain, including the S. nigra, parkin is largely insoluble after age 40 years, which is linked to its oxidation, e.g., at Cys95 and Cys253. In mice, oxidative stress increases posttranslational modifications at parkin cysteines and reduces its solubility. Oxidation of recombinant parkin also promotes insolubility and aggregate formation, but in parallel, lowers hydrogen peroxide (H2O2). This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. Intriguingly, in parkin-deficient human brain H2O2 concentrations are elevated. In prkn-null mice, H2O2 levels are dysregulated under oxidative stress conditions, such as acutely by MPTP-toxin exposure or chronically due to a second genetic hit. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminergic M17 cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct formation, which occurs foremost at primate-specific Cys95. Further, wild-type but not p.C95A-mutant parkin augments melanin formation. In sections of normal, adult human midbrain, parkin specifically co-localizes with neuromelanin pigment, frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration of radicals within insoluble aggregates, and increased melanin formation. The loss of these redox effects may augment oxidative stress in dopamine producing neurons of mutant PRKN allele carriers, thereby contributing to neurodegeneration.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jogender Mehla ◽  
Itender Singh ◽  
Deepti Diwan ◽  
James W. Nelson ◽  
Molly Lawrence ◽  
...  

AbstractPrevious reports indicate a potential role for signal transducer and activator of transcription 3 (STAT3) in amyloid-β (Aβ) processing and neuritic plaque pathogenesis. In the present study, the impact of STAT3 inhibition on cognition, cerebrovascular function, amyloid pathology, oxidative stress, and neuroinflammation was studied using in vitro and in vivo models of Alzheimer’s disease (AD)-related pathology. For in vitro experiments, human brain vascular smooth muscle cells (HBVSMC) and human brain microvascular endothelial cells (HBMEC) were used, and these cultured cells were exposed to Aβ peptides followed by measurement of activated forms of STAT3 expression and reactive oxygen species (ROS) generation. Further, 6 months old 5XFAD/APOE4 (5XE4) mice and age-matched negative littermates were used for in vivo experiments. These mice were treated with STAT3 specific inhibitor, LLL-12 for 2 months followed by neurobehavioral and histopathological assessment. In vitro experiments showed exposure of cerebrovascular cells to Aβ peptides upregulated activated forms of STAT3 and produced STAT3-mediated vascular oxidative stress. 5XE4 mice treated with the STAT3-specific inhibitor (LLL-12) improved cognitive functions and functional connectivity and augmented cerebral blood flow. These functional improvements were associated with a reduction in neuritic plaques, cerebral amyloid angiopathy (CAA), oxidative stress, and neuroinflammation. Reduction in amyloid precursor protein (APP) processing and attenuation of oxidative modification of lipoprotein receptor related protein-1 (LRP-1) were identified as potential underlying mechanisms. These results demonstrate the broad impact of STAT3 on cognitive functions, parenchymal and vascular amyloid pathology and highlight the therapeutic potential of STAT3 specific inhibition for treatment of AD and CAA.


2006 ◽  
Vol 74 (12) ◽  
pp. 6839-6846 ◽  
Author(s):  
Ge Wang ◽  
Yang Hong ◽  
Adriana Olczak ◽  
Susan E. Maier ◽  
Robert J. Maier

ABSTRACT Neutrophil-activating protein (NapA) has been well documented to play roles in human neutrophil recruitment and in stimulating host cell production of reactive oxygen intermediates (ROI). A separate role for NapA in combating oxidative stress within H. pylori was implied by studies of various H. pylori mutant strains. Here, physiological analysis of a napA strain was the approach used to assess the iron-sequestering and stress resistance roles of NapA, its role in preventing oxidative DNA damage, and its importance to mouse colonization. The napA strain was more sensitive to oxidative stress reagents and to oxygen, and it contained fourfold more intracellular free iron and more damaged DNA than the parent strain. Pure, iron-loaded NapA bound to DNA, but native NapA did not, presumably linking iron levels sensed by NapA to DNA damage protection. Despite its in vitro phenotype of sensitivity to oxidative stress, the napA strain showed normal (like that of the wild type) mouse colonization efficiency in the conventional in vivo assay. By use of a modified mouse inoculation protocol whereby nonviable H. pylori is first inoculated into mice, followed by (live) bacterial strain administration, an in vivo role for NapA in colonization efficiency could be demonstrated. NapA is the critical component responsible for inducing host-mediated ROI production, thus inhibiting colonization by the napA strain. An animal colonization experiment with a mixed-strain infection protocol further demonstrated that the napA strain has significantly decreased ability to survive when competing with the wild type. H. pylori NapA has unique and separate roles in gastric pathogenesis.


2007 ◽  
Vol 283 (3) ◽  
pp. 1628-1636 ◽  
Author(s):  
Nozomu Kono ◽  
Takao Inoue ◽  
Yasukazu Yoshida ◽  
Hiroyuki Sato ◽  
Tomokazu Matsusue ◽  
...  

Membrane phospholipids are susceptible to oxidation, which is involved in various pathological processes such as inflammation, atherogenesis, neurodegeneration, and aging. One enzyme that may help to remove oxidized phospholipids from cells is intracellular type II platelet-activating factor acetylhydrolase (PAF-AH (II)), which hydrolyzes oxidatively fragmented fatty acyl chains attached to phospholipids. Overexpression of PAF-AH (II) in cells or tissues was previously shown to suppress oxidative stress-induced cell death. In this study we investigated the functions of PAF-AH (II) by generating PAF-AH (II)-deficient (Pafah2-/-) mice. PAF-AH (II) was predominantly expressed in epithelial cells such as kidney proximal and distal tubules, intestinal column epithelium, and hepatocytes. Although PAF-AH activity was almost abolished in the liver and kidney of Pafah2-/- mice, Pafah2-/- mice developed normally and were phenotypically indistinguishable from wild-type mice. However, mouse embryonic fibroblasts derived from Pafah2-/- mice were more sensitive to tert-butylhydroperoxide treatment than those derived from wild-type mice. When carbon tetrachloride (CCl4) was injected into mice, Pafah2-/- mice showed a delay in hepatic injury recovery. Moreover, after CCl4 administration, liver levels of the esterified form of 8-iso-PGF2α, a known in vitro substrate of PAF-AH (II), were higher in Pafah2-/- mice than in wild-type mice. These results indicate that PAF-AH (II) is involved in the metabolism of esterified 8-isoprostaglandin F2α and protects tissue from oxidative stress-induced injury.


2006 ◽  
Vol 5 (7) ◽  
pp. 1081-1090 ◽  
Author(s):  
Susan M. Kraemer ◽  
David A. Goldstrohm ◽  
Ann Berger ◽  
Susan Hankey ◽  
Sherry A. Rovinsky ◽  
...  

ABSTRACT To characterize the role of the general transcription factor TFIIA in the regulation of gene expression by RNA polymerase II, we examined the transcriptional profiles of TFIIA mutants of Saccharomyces cerevisiae using DNA microarrays. Whole-genome expression profiles were determined for three different mutants with mutations in the gene coding for the small subunit of TFIIA, TOA2. Depending on the particular mutant strain, approximately 11 to 27% of the expressed genes exhibit altered message levels. A search for common motifs in the upstream regions of the pool of genes decreased in all three mutants yielded the binding site for Yap1, the transcription factor that regulates the response to oxidative stress. Consistent with a TFIIA-Yap1 connection, the TFIIA mutants are unable to grow under conditions that require the oxidative stress response. Underexpression of Yap1-regulated genes in the TFIIA mutant strains is not the result of decreased expression of Yap1 protein, since immunoblot analysis indicates similar amounts of Yap1 in the wild-type and mutant strains. In addition, intracellular localization studies indicate that both the wild-type and mutant strains localize Yap1 indistinguishably in response to oxidative stress. As such, the decrease in transcription of Yap1-dependent genes in the TFIIA mutant strains appears to reflect a compromised interaction between Yap1 and TFIIA. This hypothesis is supported by the observations that Yap1 and TFIIA interact both in vivo and in vitro. Taken together, these studies demonstrate a dependence of Yap1 on TFIIA function and highlight a new role for TFIIA in the cellular mechanism of defense against reactive oxygen species.


2010 ◽  
Vol 298 (3) ◽  
pp. C665-C678 ◽  
Author(s):  
Yixin Tang ◽  
Elizabeth A. Scheef ◽  
Zafer Gurel ◽  
Christine M. Sorenson ◽  
Colin R. Jefcoate ◽  
...  

We have recently shown that deletion of constitutively expressed CYP1B1 is associated with attenuation of retinal endothelial cell (EC) capillary morphogenesis (CM) in vitro and angiogenesis in vivo. This was largely caused by increased intracellular oxidative stress and increased production of thrombospondin-2, an endogenous inhibitor of angiogenesis. Here, we demonstrate that endothelium nitric oxide synthase (eNOS) expression is dramatically decreased in the ECs prepared from retina, lung, heart, and aorta of CYP1B1-deficient (CYP1B1−/−) mice compared with wild-type (CYP1B1+/+) mice. The eNOS expression was also decreased in retinal vasculature of CYP1B1−/− mice. Inhibition of eNOS activity in cultured CYP1B1+/+ retinal ECs blocked CM and was concomitant with increased oxidative stress, like in CYP1B1−/− retinal ECs. In addition, expression of eNOS in CYP1B1−/− retinal ECs or their incubation with a nitric oxide (NO) donor enhanced NO levels, lowered oxidative stress, and improved cell migration and CM. Inhibition of CYP1B1 activity in the CYP1B1+/+ retinal ECs resulted in reduced NO levels and attenuation of CM. In contrast, expression of CYP1B1 increased NO levels and enhanced CM of CYP1B1−/− retinal ECs. Furthermore, attenuation of CYP1B1 expression with small interfering RNA proportionally lowered eNOS expression and NO levels in wild-type cells. Together, our results link CYP1B1 metabolism in retinal ECs with sustained eNOS activity and NO synthesis and/or bioavailability and low oxidative stress and thrombospondin-2 expression. Thus CYP1B1 and eNOS cooperate in different ways to lower oxidative stress and thereby to promote CM in vitro and angiogenesis in vivo.


Author(s):  
Kitlangki Suchiang ◽  
Nitasha H Kayde

Background: Phlogacanthus thyrsiflorus Nees (P. thyrsiflorus) of Acanthaceae family is endogenous to sub-tropical Himalayas. It has been reported to be used traditionally in Jaintia tribe of Meghalaya, India for treatment of many ailments.Objectives: The aim was to detect the active compounds present in the leaves for evaluation of in vitro free radicals scavenging potentials. Leaves protective actions in vivo will be investigated using Caenorhabditis elegans (C. elegans) model system utilizing wild type and mutant strains and the phenomena of host-pathogens interactions.Materials and methods: Gas chromatography/ Mass spectrometry (GC/MS) was used for detection of different compounds present. The versatility of leaf extracts to scavenge different free radicals generated in vitro was assessed with different in vitro methods. Survival analysis of wild type and mutant strains C. elegans under enhanced pro-oxidants exposure was investigated in vivo. Fast killing assay was also performed to study the extracts modulatory activity on host C. elegans survival under pathogen Pseudomonas aeruginosa infection.Results:  Forty compounds were detected in methanolic fraction of the extract with variable percentages. Both aqueous and methanol extract possessed remarkable, versatile free radical scavenging activity irrespective of the types of free radical generated. The in vivo experiments are in compliance, with observable increased survival ability percentage of C. elegans under intense exogenous oxidative stress and pathogen infection.Conclusion: Our findings enlightened the different compounds present with versatility of P. thyrsiflorus in tackling different free radicals generated both in vitro and in vivo that highly support for its candidature as a good antioxidant source. Our findings may justify the historical relevance of this plant in herbal remedies that could form the basis for inquiry of new active principles.Keywords: Free radicals, Oxidative stress, Caenorhabditis elegans, Phlogacanthus thyrsiflorus, Phytochemicals


2017 ◽  
Vol 73 (4) ◽  
pp. 326-339 ◽  
Author(s):  
Adam A. Campos-Acevedo ◽  
Rogerio R. Sotelo-Mundo ◽  
Javier Pérez ◽  
Enrique Rudiño-Piñera

The quaternary structure of the redox protein thioredoxin (Trx) has been debated. For bacterial Trx, there is no question regarding its monomeric state. In humans and other eukaryotes, the presence of a cysteine residue at the crystallographic symmetry axis points to the relevance of dimer formation in solution andin vivo. Crystallographic data for shrimp thioredoxin (LvTrx) obtained under different redox conditions reveal a dimeric arrangement mediated by a disulfide bond through residue Cys73 and other hydrophobic interactions located in the crystallographic interface, as reported for human Trx. Through the analysis of five mutants located at the crystallographic interface, this study provides structural and biochemical evidence for the existence in solution of monomeric and dimeric populations of wild-typeLvTrx and five mutants. Based on the results of biochemical assays, SAXS studies and the crystallographic structures of three of the studied mutants (Cys73Ser, Asp60Ser and Trp31Ala), it is clear that the Cys73 residue is essential for dimerization. However, its mutation to Ser produces an enzyme which has similar redox activityin vitroto the wild type. A putative regulatory function of dimerization is proposed based on structural analysis. Nonetheless, the biological role ofLvTrx dimerization needs to be experimentally unveiled. Additionally, the findings of this work reopen the discussion regarding the existence of similar behaviour in human thioredoxin, which shares a Cys at position 73 withLvTrx, a structural feature that is also present in some Trxs from vertebrates and crustaceans.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Leonardo Santos ◽  
Carlos Escande ◽  
Ana Denicola

Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identifiedin vitroandin vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Toby B. Cole ◽  
Gennaro Giordano ◽  
Aila L. Co ◽  
Isaac Mohar ◽  
Terrance J. Kavanagh ◽  
...  

Glutathione (GSH) is a major player in cellular defense against oxidative stress. Deletion of the modifier subunit of glutamate cysteine ligase (GCLM), the first and the rate-limiting enzyme in the synthesis of GSH, leads to significantly lower GSH levels in all tissues including the brain.GCLM-knockout (Gclm−/−) mice may thus represent a model for compromised response to oxidative stress amenable toin vitroandin vivoinvestigations. In order to determine whether the diminished GSH content would by itself cause behavioral alterations, a series of behavioral tests were carried out comparing young adultGclm−/−with wild-type mice. Tests included the rotarod, acoustic startle reflex and prepulse inhibition of the startle reflex, open field behavior, and the platform reversal variant of the Morris Water Maze. Results showed no differences betweenGclm−/−and wild-type mice in any of the neurobehavioral tests. However, more subtle alterations, or changes which may appear as animals age, cannot be excluded.


Sign in / Sign up

Export Citation Format

Share Document