scholarly journals Comparative phytochemical analysis of Phlogacanthus thyrsiflorus Nees: Implications on attenuation of pro-oxidants and pathogen virulence in Caenorhabditis elegans model system

Author(s):  
Kitlangki Suchiang ◽  
Nitasha H Kayde

Background: Phlogacanthus thyrsiflorus Nees (P. thyrsiflorus) of Acanthaceae family is endogenous to sub-tropical Himalayas. It has been reported to be used traditionally in Jaintia tribe of Meghalaya, India for treatment of many ailments.Objectives: The aim was to detect the active compounds present in the leaves for evaluation of in vitro free radicals scavenging potentials. Leaves protective actions in vivo will be investigated using Caenorhabditis elegans (C. elegans) model system utilizing wild type and mutant strains and the phenomena of host-pathogens interactions.Materials and methods: Gas chromatography/ Mass spectrometry (GC/MS) was used for detection of different compounds present. The versatility of leaf extracts to scavenge different free radicals generated in vitro was assessed with different in vitro methods. Survival analysis of wild type and mutant strains C. elegans under enhanced pro-oxidants exposure was investigated in vivo. Fast killing assay was also performed to study the extracts modulatory activity on host C. elegans survival under pathogen Pseudomonas aeruginosa infection.Results:  Forty compounds were detected in methanolic fraction of the extract with variable percentages. Both aqueous and methanol extract possessed remarkable, versatile free radical scavenging activity irrespective of the types of free radical generated. The in vivo experiments are in compliance, with observable increased survival ability percentage of C. elegans under intense exogenous oxidative stress and pathogen infection.Conclusion: Our findings enlightened the different compounds present with versatility of P. thyrsiflorus in tackling different free radicals generated both in vitro and in vivo that highly support for its candidature as a good antioxidant source. Our findings may justify the historical relevance of this plant in herbal remedies that could form the basis for inquiry of new active principles.Keywords: Free radicals, Oxidative stress, Caenorhabditis elegans, Phlogacanthus thyrsiflorus, Phytochemicals

2021 ◽  
pp. 1-17
Author(s):  
Mani Iyer Prasanth ◽  
James Michael Brimson ◽  
Dicson Sheeja Malar ◽  
Anchalee Prasansuklab ◽  
Tewin Tencomnao

BACKGROUND: Streblus asper Lour., has been reported to have anti-aging and neuroprotective efficacies in vitro. OBJECTIVE: To analyze the anti-aging, anti-photoaging and neuroprotective efficacies of S. asper in Caenorhabditis elegans. METHODS: C. elegans (wild type and gene specific mutants) were treated with S. asper extract and analyzed for lifespan and other health benefits through physiological assays, fluorescence microscopy, qPCR and Western blot. RESULTS: The plant extract was found to increase the lifespan, reduce the accumulation of lipofuscin and modulate the expression of candidate genes. It could extend the lifespan of both daf-16 and daf-2 mutants whereas the pmk-1 mutant showed no effect. The activation of skn-1 was observed in skn-1::GFP transgenic strain and in qPCR expression. Further, the extract can extend the lifespan of UV-A exposed nematodes along with reducing ROS levels. Additionally, the extract also extends lifespan and reduces paralysis in Aβ transgenic strain, apart from reducing Aβ expression. CONCLUSIONS: S. asper was able to extend the lifespan and healthspan of C. elegans which was independent of DAF-16 pathway but dependent on SKN-1 and MAPK which could play a vital role in eliciting the anti-aging, anti-photoaging and neuroprotective effects, as the extract could impart oxidative stress resistance and neuroprotection.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fujie Yan ◽  
Yushu Chen ◽  
Ramila Azat ◽  
Xiaodong Zheng

Mulberry anthocyanins possess many pharmacological effects including liver protection, anti-inflammation, and anticancer. The aim of this study was to evaluate whether mulberry anthocyanin extract (MAE) exerts beneficial effects against oxidative stress damage in HepG2 cells and Caenorhabditis elegans. In vitro, MAE prevented cytotoxicity, increased glucose consumption and uptake, and eliminated excessive intracellular free radicals in H2O2-induced cells. Moreover, MAE pretreatment maintained Nrf2, HO-1, and p38 MAPK stimulation and abolished upregulation of p-JNK, FOXO1, and PGC-1α that were involved in oxidative stress and insulin signalling modulation. In vivo, extended lifespan was observed in C. elegans damaged by paraquat in the presence of MAE, while these beneficial effects were disappeared in pmk-1 and daf-16 mutants. PMK-1 and SKN-1 were activated after exposure to paraquat and MAE suppressed PMK-1 activation but enhanced SKN-1 stimulation. Our findings suggested that MAE recovered redox status in HepG2 cells and C. elegans that suffered from oxidative stress, which might be by targeting MAPKs and Nrf2.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1879 ◽  
Author(s):  
Erjia Wang ◽  
Michael Wink

Green vegetables are thought to be responsible for several beneficial properties such as antioxidant, anti-mutagenic, and detoxification activities. It is not known whether these effects are due to chlorophyll which exists in large amounts in many foods or result from other secondary metabolites. In this study, we used the model systemCaenorhabditis elegansto investigate the anti-oxidative and anti-aging effects of chlorophyllin vivo. We found that chlorophyll significantly improves resistance to oxidative stress. It also enhances the lifespan ofC. elegansby up to 25% via activation of the DAF-16/FOXO-dependent pathway. The results indicate that chlorophyll is absorbed by the worms and is thus bioavailable, constituting an important prerequisite for antioxidant and longevity-promoting activities inside the body. Our study thereby supports the view that green vegetables may also be beneficial for humans.


2006 ◽  
Vol 5 (7) ◽  
pp. 1081-1090 ◽  
Author(s):  
Susan M. Kraemer ◽  
David A. Goldstrohm ◽  
Ann Berger ◽  
Susan Hankey ◽  
Sherry A. Rovinsky ◽  
...  

ABSTRACT To characterize the role of the general transcription factor TFIIA in the regulation of gene expression by RNA polymerase II, we examined the transcriptional profiles of TFIIA mutants of Saccharomyces cerevisiae using DNA microarrays. Whole-genome expression profiles were determined for three different mutants with mutations in the gene coding for the small subunit of TFIIA, TOA2. Depending on the particular mutant strain, approximately 11 to 27% of the expressed genes exhibit altered message levels. A search for common motifs in the upstream regions of the pool of genes decreased in all three mutants yielded the binding site for Yap1, the transcription factor that regulates the response to oxidative stress. Consistent with a TFIIA-Yap1 connection, the TFIIA mutants are unable to grow under conditions that require the oxidative stress response. Underexpression of Yap1-regulated genes in the TFIIA mutant strains is not the result of decreased expression of Yap1 protein, since immunoblot analysis indicates similar amounts of Yap1 in the wild-type and mutant strains. In addition, intracellular localization studies indicate that both the wild-type and mutant strains localize Yap1 indistinguishably in response to oxidative stress. As such, the decrease in transcription of Yap1-dependent genes in the TFIIA mutant strains appears to reflect a compromised interaction between Yap1 and TFIIA. This hypothesis is supported by the observations that Yap1 and TFIIA interact both in vivo and in vitro. Taken together, these studies demonstrate a dependence of Yap1 on TFIIA function and highlight a new role for TFIIA in the cellular mechanism of defense against reactive oxygen species.


2021 ◽  
Vol 16 (10) ◽  
pp. 198-206
Author(s):  
Kiran Singh ◽  
Shweta Yadav

Owing to ubiquitous distribution, high abundances and ecological relevance, Caenorhabditis elegans has strong potential interest as barometer of environment and human health. Ecotoxicological methods are used to evaluate the effect of various anthropogenic contaminants on the ecosystems that circumscribe both in-vivo and in-vitro toxicities to explore the pathways and mechanisms of toxicity and to set precise toxicity thresholds. The interest in C. elegans, as a model organism in toxicological studies, has increased over the past few decades. The enticement of C. elegans comes from the ease of metabolically active digestive, sensory, endocrine, neuromuscular, reproductive systems and genetic manipulation along with the ability to fluorescently label neuronal subtypes. The study reviews the competence of Caenorhabditis elegans as a potential model organism in various toxicity assays specifically neurotoxicity and oxidative stress.


2011 ◽  
Vol 80 (3) ◽  
pp. 1288-1299 ◽  
Author(s):  
Cynthia Portal-Celhay ◽  
Martin J. Blaser

The microbial communities that reside within the intestinal tract in vertebrates are complex and dynamic. In this report, we establish the utility ofCaenorhabditis elegansas a model system for identifying the factors that contribute to bacterial persistence and for host control of gut luminal populations. We found that for N2 worms grown on mixed lawns of bacteria,Salmonella entericaserovar Typhimurium substantially outcompetedEscherichia coli, even whenE. coliwas initially present at 100-fold-higher concentrations. To address whether innate immunity affects the competition, thedaf-2anddaf-16mutants were studied; their total gut bacterial levels reflect overall capacity for colonization, butSalmonellaoutcompetedE. colito an extent similar to wild-type worms. To address the role of virulence properties,SalmonellaΔspi-1Δspi-2was used to compete withE. coli. The net differential was significantly less than that for wild-typeSalmonella; thus,spi-1 spi-2encodesC. eleganscolonization factors. AnE. colistrain with repeatedin vivopassage had an enhanced ability to compete against anin vitro-passedE. colistrain and againstSalmonella. Our data provide evidence of active competition for colonization niches in theC. elegansgut, as determined by bacterial factors and subject toin vivoselection.


2020 ◽  
Vol 19 (2) ◽  
pp. 145-151
Author(s):  
Leila Gadouche ◽  
Abdelkader Saadi ◽  
Khayra Zerrouki ◽  
Noureddine Djebli ◽  
Meryem Sendjasni ◽  
...  

Free radicals, oxidative stress or antioxidants is more and more often used to explain different pathological disorders and their therapeutic approach. The aim of this study was to evaluate the protective effect of anthocyanin extract obtained by maceration of the flowers of Lavandula dentata in 0.1 % HCl/methanol (v/v) solution on oxidative stress. The antioxidant activity of anthocyanin extract in vitro was evaluated by reduction of iron (FRAP), DPPH and the ß-carotene tests. The in vivo oxidative stress was induced by intraperitoneal injection of 0.5 ml/kg of CCl4 and treated orally by 500mg kg/day of the extract. Anthocyanins extract inhibited the free radical DPPH (IC50:1.3 ± 0.23 mg/ml). Lavender extract prevented the oxidation of B carotene (28.34 ± 0.07%) and has an ability to reduce iron (0.736 ± 0.03). Intraperitoneal injection of CCl4 has increased biochemical parameters, which was evidence of oxidative stress in vivo. In contrast, daily oral administration of anthocyanin extract has restored the biochemical parameters. Histopathological examinations of liver stained with haematoxylin and eosin showed loss of hepatic architecture. These injuries observed have been improved by treatment with anthocyanin extract. The findings revealed that anthocyanin extract from lavender possesses a significant antioxidant activity. Dhaka Univ. J. Pharm. Sci. 19(2): 145-151, 2020 (December)


2018 ◽  
Vol 15 (2) ◽  
pp. 359-365
Author(s):  
Lê Thọ Sơn ◽  
Joohong Ahnn ◽  
Jeong Hoon Cho ◽  
Nguyễn Huy Hoàng

Dicarbonyl/L-xylulose (DCXR) was identified as a dehydrogenase. This type of enzyme was presented in various forms of lives including bacteria, fungi, plants and animals. Generally, it converts L-xylulose to xylitol in the presence of either cofactor NADH or NADPH in vitro. Previous studies reported the biochemistry properties and crystal structure but largely uncovered biological roles of DCXRs. It was impossible to dissect the functions in mice or human cells that had many DCXR homologs in their genomes. Interestingly, the wild-type Caenorhabditis elegans, a well-known model organism in biological research, has only nuclear genomic dhs-21 that encodes a unique homologous DCXR. Thus Ce.dhs-21 and the host C. elegans were relevant for investigation of the physiologically-vital functions of the DCXR. This research aimed to the expression of dhs-21 in vivo. We defined three promoters , manipulated three relative reporter-constructs that conjugated the dhs-21 gene and Green Flouresent Protein (known as GFP) one. The construct vectors were transferred into wild-type C. elegans N2 and as well as the hermaphroditic loss of function dhs-21(jh129) by microinjection. In the results, we found that the expression pattern of dhs-21 under the only p2-promoter construct was stable and similar to immunogold Electric Microscopy (EM) images. The dhs-21 gene was expressed in both sexes of at all larval stages till the deaths of worms. DHS-21 was expressed in the cytosol of the intestinal, gonad sheath and uterous seam cell (utse).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 309
Author(s):  
Olukayode O. Aremu ◽  
Adebola O. Oyedeji ◽  
Opeoluwa O. Oyedeji ◽  
Benedicta N. Nkeh-Chungag ◽  
Constance R. Sewani Rusike

Oxidative stress has gained attention as one of the fundamental mechanisms responsible for the development of hypertension. The present study investigated in vitro and in vivo antioxidant effects of 70% ethanol-water (v/v) leaf and root extracts of T. officinale (TOL and TOR, respectively). Total phenolic and flavonoid content of plant extracts were assessed using Folin Ciocalteau and aluminium chloride colorimetric methods; while, 2,2-diphenyl-1-picrlhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) protocols were used to determine the free radical scavenging and total antioxidant capacities (TAC), respectively. The in vivo total antioxidant capacity and malondialdehyde acid (MDA) levels for lipid peroxidation tests were performed on organ homogenate samples from Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats treated with leaf extract, TOL (500 mg/kg/day) and TOR (500 mg/kg/day) for 21 days. Results showed that compared to TOR, TOL possessed significantly higher (p < 0.01) polyphenol (4.35 ± 0.15 compared to 1.14 ± 0.01) and flavonoid (23.17 ± 0.14 compared to 3 ± 0.05) content; free radical scavenging activity (EC50 0.37 compared to 1.34 mg/mL) and total antioxidant capacities (82.56% compared to 61.54% ABTS, and 156 ± 5.28 compared to 40 ± 0.31 FRAP) and both extracts showed no toxicity (LD50 > 5000 mg/kg). TOL and TOR significantly (p < 0.01) elevated TAC and reduced MDA levels in targets organs. In conclusion, T. officinale leaf extract possesses significant anti-oxidant effects which conferred significant in vivo antioxidant protection against free radical-mediated oxidative stress in L-NAME-induced hypertensive rats.


Sign in / Sign up

Export Citation Format

Share Document