The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies

2016 ◽  
Vol 308 (2) ◽  
pp. 123-132 ◽  
Author(s):  
Supamas Napavichayanun ◽  
Rungnapha Yamdech ◽  
Pornanong Aramwit
2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1125
Author(s):  
Raluca Nicu ◽  
Florin Ciolacu ◽  
Diana E. Ciolacu

Nanocelluloses (NCs), with their remarkable characteristics, have proven to be one of the most promising “green” materials of our times and have received special attention from researchers in nanomaterials. A diversity of new functional materials with a wide range of biomedical applications has been designed based on the most desirable properties of NCs, such as biocompatibility, biodegradability, and their special physicochemical properties. In this context and under the pressure of rapid development of this field, it is imperative to synthesize the successes and the new requirements in a comprehensive review. The first part of this work provides a brief review of the characteristics of the NCs (cellulose nanocrystals—CNC, cellulose nanofibrils—CNF, and bacterial nanocellulose—BNC), as well as of the main functional materials based on NCs (hydrogels, nanogels, and nanocomposites). The second part presents an extensive review of research over the past five years on promising pharmaceutical and medical applications of nanocellulose-based materials, which have been discussed in three important areas: drug-delivery systems, materials for wound-healing applications, as well as tissue engineering. Finally, an in-depth assessment of the in vitro and in vivo cytotoxicity of NCs-based materials, as well as the challenges related to their biodegradability, is performed.


2021 ◽  
pp. 51764
Author(s):  
Alireza Akbari ◽  
Shahram Rabbani ◽  
Shiva Irani ◽  
Mojgan Zandi ◽  
Fereshteh Sharifi ◽  
...  

Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 791 ◽  
Author(s):  
Ming-Hsiang Chang ◽  
Yu-Ping Hsiao ◽  
Chia-Yen Hsu ◽  
Ping-Shan Lai

Wound infection extends the duration of wound healing and also causes systemic infections such as sepsis, and, in severe cases, may lead to death. Early prevention of wound infection and its appropriate treatment are important. A photoreactive modified gelatin (GE-BTHE) was synthesized by gelatin and a conjugate formed from the 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and the 2-hydroxyethyl methacrylate (HEMA). Herein, we investigated the photocurable polymer solution (GE-BTHE mixture) containing GE-BTHE, poly(ethylene glycol) diacrylate (PEGDA), chitosan, and methylene blue (MB), with antimicrobial functions and photodynamic antimicrobial chemotherapy for wound dressing. This photocurable polymer solution was found to have fast film-forming property attributed to the photochemical reaction between GE-BTHE and PEGDA, as well as the antibacterial activity in vitro attributed to the ingredients of chitosan and MB. Our in vivo results also demonstrated that untreated wounds after 3 days had the same scab level as the GE-BTHE mixture-treated wounds after 20 s of irradiation, which indicates that the irradiated GE-BTHE mixture can be quickly transferred into artificial scabs to protect wounds from an infection that can serve as a convenient excisional wound dressing with antibacterial efficacy. Therefore, it has the potential to treat nonhealing wounds, deep burns, diabetic ulcers and a variety of mucosal wounds.


2016 ◽  
Vol 125 (4) ◽  
pp. 732-743 ◽  
Author(s):  
Hiroshi Sunaga ◽  
John J. Savarese ◽  
Jeff D. McGilvra ◽  
Paul M. Heerdt ◽  
Matthew R. Belmont ◽  
...  

Abstract Background CW002, a novel nondepolarizing neuromuscular blocking agent of intermediate duration, is degraded in vitro by l-cysteine; CW002-induced neuromuscular blockade (NMB) is antagonized in vivo by exogenous l-cysteine.1 Further, Institutional Animal Care and Use Committee–approved studies of safety and efficacy in eight anesthetized monkeys and six cats are described. Methods Mean arterial pressure, heart rate, twitch, and train-of-four were recorded; estimated dose producing 95% twitch inhibition (ED95) for NMB and twitch recovery intervals from 5 to 95% of baseline were derived. Antagonism of 99 to 100% block in monkeys by l-cysteine (50 mg/kg) was tested after bolus doses of approximately 3.75 to 20 × ED95 and after infusions. Vagal and sympathetic autonomic responses were recorded in cats. Dose ratios for [circulatory (ED20) or autonomic (ED50) changes/ED95 (NMB)] were calculated. Results ED95s of CW002 in monkeys and cats were 0.040 and 0.035 mg/kg; l-cysteine readily antagonized block in monkeys: 5 to 95% twitch recovery intervals were shortened to 1.8 to 3.6 min after 3.75 to 10 × ED95 or infusions versus 11.5 to 13.5 min during spontaneous recovery. ED for 20% decrease of mean arterial pressure (n = 27) was 1.06 mg/kg in monkeys; ED for 20% increase of HR (n = 27) was 2.16 mg/kg. ED50s for vagal and sympathetic inhibition in cats were 0.59 and >>0.80 mg/kg (n = 14 and 15). Dose ratios for [circulatory or autonomic changes/ED95 (NMB)] were all more than 15 × ED95. Conclusions The data further verify the neuromuscular blocking properties of CW002, including rapid reversal by l-cysteine of 100% NMB under several circumstances. A notable lack of autonomic or circulatory effects provided added proof of safety and efficacy.


Planta Medica ◽  
2018 ◽  
Vol 85 (03) ◽  
pp. 239-248 ◽  
Author(s):  
Anju Benny ◽  
Jaya Thomas

AbstractAlzheimerʼs disease is a multifarious neurodegenerative disease that causes cognitive impairment and gradual memory loss. Several hypotheses have been put forward to postulate its pathophysiology. Currently, few drugs are available for the management of Alzheimerʼs disease and the treatment provides only symptomatic relief. Our aim is to review the relevant in vitro, in vivo, and clinical studies focused toward the potential uses of essential oils in the treatment of Alzheimerʼs disease. Scientific databases such as PubMed, ScienceDirect, Scopus, and Google Scholar from April 1998 to June 2018 were explored to collect data. We have conducted wide search on various essential oils used in different models of Alzheimerʼs disease. Out of 55 essential oils identified for Alzheimerʼs intervention, 28 have been included in the present review. A short description of in vivo studies of 13 essential oils together with clinical trial data of Salvia officinalis, Salvia lavandulifolia, Melissa officinalis, Lavandula angustifolia, and Rosmarinus officinalis have been highlighted. In vitro studies of remaining essential oils that possess antioxidant and anticholinesterase potential are also mentioned. Our literary survey revealed encouraging results regarding the various essential oils being studied in preclinical and clinical studies of Alzheimerʼs disease with significant effects in modulating the pathology through anti-amyloid, antioxidants, anticholinesterase, and memory-enhancement activity.


2021 ◽  
Author(s):  
Parinaz Nezhadmokhtari ◽  
Nahideh Asadi ◽  
Marjan Ghorbani ◽  
Azizeh Rahmani Del Bakhshayesh ◽  
Morteza Milani ◽  
...  

Abstract Bacterial nanocellulose (BNC) is a type of 3-dimensionally structured polymer gel produced by Acetobacter that has recently attracted increased interest in wound healing concerns. To produce an effective antibacterial wound dressing, researchers investigated the manufacturing and structural features of honey-infused BNC reinforced gelatin/aldehyde-modified Guar gum films (H/BNC/Ge/AD-GG). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), mechanical characteristics, water solubility, and degradability were all used to assess the produced films. In addition, the influence of honey addition on the produced films' various properties has been examined. Antibacterial activity, better degradation capability, improved mechanical qualities, and excellent cell adhesion and proliferation by NIH-3T3 fibroblast cells were among the outcomes. The cytotoxicity assay in vitro revealed good cytocompatibility. As a result of the findings, the produced H/BNC/Ge/AD-GG films appear to have a high potential for antibacterial wound dressing applications.


2020 ◽  
Vol 12 ◽  
pp. 175883592092679
Author(s):  
Seung Tae Kim ◽  
Jung Yong Hong ◽  
Se Hoon Park ◽  
Joon Oh Park ◽  
Young Whan Park ◽  
...  

Background: YYB101, a humanized monoclonal antibody against hepatocyte growth factor (HGF), has shown safety and efficacy in vitro and in vivo. This is a first-in-human trial of this antibody. Materials and Methods: YYB101 was administered intravenously to refractory cancer patients once every 4 weeks for 1 month, and then once every 2 weeks until disease progression or intolerable toxicity, at doses of 0.3, 1, 3, 5, 10, 20, 30 mg/kg, according to a 3+3 dose escalation design. Maximum tolerated dose, safety, pharmacokinetics, and pharmacodynamics were studied. HGF, MET, PD-L1, and ERK expression was evaluated for 9 of 17 patients of the expansion cohort (20 mg/kg). Results: In 39 patients enrolled, no dose-limiting toxicity was observed at 0.3 mg/kg, and the most commonly detected toxicity was generalized edema ( n = 7, 18.9%) followed by pruritis and nausea ( n = 5, 13.5%, each), fatigue, anemia, and decreased appetite ( n = 4, 10.8%, each). No patient discontinued treatment because of adverse events. YYB101 showed dose-proportional pharmacokinetics up to 30 mg/kg. Partial response in 1 (2.5%) and stable disease in 17 (43.5%) were observed. HGF, MET, PD-L1, and ERK proteins were not significant predictors for treatment response. However, serum HGF level was significantly lowered in responders upon drug administration. RNA sequencing revealed a mesenchymal signature in two long-term responders. Conclusion: YYB101 showed favorable safety and efficacy in patients with refractory solid tumors. Based on this phase I trial, a phase II study on the YYB101 + irinotecan combination in refractory metastatic colorectal cancer patients is planned. Conclusion: ClinicalTrials.gov Identifier: NCT02499224


Sign in / Sign up

Export Citation Format

Share Document