scholarly journals Development of a Novel Film Based on Bacterial Nanocellulose Reinforced Gelatin/Guar Gum Containing Honey for Wound Healing Applications

Author(s):  
Parinaz Nezhadmokhtari ◽  
Nahideh Asadi ◽  
Marjan Ghorbani ◽  
Azizeh Rahmani Del Bakhshayesh ◽  
Morteza Milani ◽  
...  

Abstract Bacterial nanocellulose (BNC) is a type of 3-dimensionally structured polymer gel produced by Acetobacter that has recently attracted increased interest in wound healing concerns. To produce an effective antibacterial wound dressing, researchers investigated the manufacturing and structural features of honey-infused BNC reinforced gelatin/aldehyde-modified Guar gum films (H/BNC/Ge/AD-GG). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), mechanical characteristics, water solubility, and degradability were all used to assess the produced films. In addition, the influence of honey addition on the produced films' various properties has been examined. Antibacterial activity, better degradation capability, improved mechanical qualities, and excellent cell adhesion and proliferation by NIH-3T3 fibroblast cells were among the outcomes. The cytotoxicity assay in vitro revealed good cytocompatibility. As a result of the findings, the produced H/BNC/Ge/AD-GG films appear to have a high potential for antibacterial wound dressing applications.

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2819 ◽  
Author(s):  
Rachele Sergi ◽  
Devis Bellucci ◽  
Roberta Salvatori ◽  
Valeria Cannillo

Passive commercial gauzes were turned into interactive wound dressings by impregnating them with a chitosan suspension. To further improve healing, and cell adhesion and proliferation, chitosan/bioactive glass wound dressings were produced with the addition of (i) 45S5, (ii) a Sr- and Mg-containing bioactive glass, and (iii) a Zn-containing bioactive glass to the chitosan suspension. SEM and FTIR analyses evidenced positive results in terms of incorporation of bioactive glass particles. Bioactivity was investigated by soaking chitosan-based bioactive glass wound dressings in simulated body fluid (SBF). Cell viability, proliferation, and morphology were investigated using NIH 3T3 (mouse embryonic fibroblast) cells by neutral red (NR) uptake and MTT assays. Furthermore, the wound-healing rate was evaluated by means of the scratch test, using NIH 3T3. The results showed that bioactive glass particles enhance cell adhesion and proliferation, and wound healing compared to pure chitosan. Therefore, chitosan-based bioactive glass wound dressings combine the properties of the organic matrix with the specific biological characteristics of bioactive glasses to achieve chitosan composites suitable for healing devices.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 791 ◽  
Author(s):  
Ming-Hsiang Chang ◽  
Yu-Ping Hsiao ◽  
Chia-Yen Hsu ◽  
Ping-Shan Lai

Wound infection extends the duration of wound healing and also causes systemic infections such as sepsis, and, in severe cases, may lead to death. Early prevention of wound infection and its appropriate treatment are important. A photoreactive modified gelatin (GE-BTHE) was synthesized by gelatin and a conjugate formed from the 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and the 2-hydroxyethyl methacrylate (HEMA). Herein, we investigated the photocurable polymer solution (GE-BTHE mixture) containing GE-BTHE, poly(ethylene glycol) diacrylate (PEGDA), chitosan, and methylene blue (MB), with antimicrobial functions and photodynamic antimicrobial chemotherapy for wound dressing. This photocurable polymer solution was found to have fast film-forming property attributed to the photochemical reaction between GE-BTHE and PEGDA, as well as the antibacterial activity in vitro attributed to the ingredients of chitosan and MB. Our in vivo results also demonstrated that untreated wounds after 3 days had the same scab level as the GE-BTHE mixture-treated wounds after 20 s of irradiation, which indicates that the irradiated GE-BTHE mixture can be quickly transferred into artificial scabs to protect wounds from an infection that can serve as a convenient excisional wound dressing with antibacterial efficacy. Therefore, it has the potential to treat nonhealing wounds, deep burns, diabetic ulcers and a variety of mucosal wounds.


2018 ◽  
Vol 9 (4) ◽  
pp. 62 ◽  
Author(s):  
Gianluca Turco ◽  
Davide Porrelli ◽  
Eleonora Marsich ◽  
Federica Vecchies ◽  
Teresa Lombardi ◽  
...  

Background: Bone substitutes, either from human (autografts and allografts) or animal (xenografts) sources, suffer from inherent drawbacks including limited availability or potential infectivity to name a few. In the last decade, synthetic biomaterials have emerged as a valid alternative for biomedical applications in the field of orthopedic and maxillofacial surgery. In particular, phosphate-based bone substitution materials have exhibited a high biocompatibility due to their chemical similitude with natural hydroxyapatite. Besides the nature of the biomaterial, its porous and interconnected architecture is essential for a correct osseointegration. This performance could be predicted with an extensive characterization of the biomaterial in vitro. Methods: In this study, we compared the biological, chemical, and structural features of four different commercially available bone substitutes derived from an animal or a synthetic source. To this end, µ-CT and SEM were used to describe the biomaterials structure. Both FTIR and EDS analyses were carried out to provide a chemical characterization. The results obtained by these techniques were correlated with cell adhesion and proliferation of the osteosarcoma MG-63 human cell line cultured in vitro. Results: The findings reported in this paper indicate a significant influence of both the nature and the structure of the biomaterials in cell adhesion and proliferation, which ultimately could affect the clinical performance of the biomaterials. Conclusions: The four commercially available bone substitutes investigated in this work significantly differed in terms of structural features, which ultimately influenced in vitro cell proliferation and may so affect the clinical performance of the biomaterials.


1970 ◽  
Vol 7 (3) ◽  
pp. 14-19 ◽  
Author(s):  
Hekdin Marsius Sipayung ◽  
Jansen Silalahi ◽  
Yuandani Y

Objectives: The objective of this study was to investigate the activity of combination of hydrolyzed VCO (HVCO) and chitosan on NIH 3T3 cell proliferation activity, NIH 3T3 cell migration, COX-2 and VEGF protein expression. Design: In vitro cytotoxic assay was determined by MTT (MicrocultureTetrazoliumTehnique) assay, cell proliferation activity was measured by calculating cell viability incubated 24 hours, 48 hours and 72 hours, wound closure percentage was tested by scratch wound healing method, expression of COX-2 protein and VEGF protein were measured by immunocytochemical method. Interventions: The variable that was intervened in this study was the concentration of HVCO and chitosan. Main Outcome Measures: The main measurements carried out in this study were the absorbance value of HVCO and chitosan which was converted into viability cell, proliferation activity, percentage of wound closure, and percentage of COX-2 and VEGF protein expression. Results: Cytotoxic activity of HVCO and chitosan resulted the best concentration at 31.25 μg/ml, scratch wound healing assay from a combination HVCO and chitosan resulted the best migration of fibroblast cells at a ratio of 1:1 with HVCO 62.5 μg/ml and chitosan 62.5 μg/ml, combination of HVCO 62.5 μg/ml and chitosan 62.5 μg/ml (1:1) increased expression of COX-2 and VEGF. Conclusion: Combination of HVCO and chitosan could increase NIH 3T3 cell migration, COX-2 and VEGF protein expression. Combination of HVCO and chitosan had better wound healing activity in vitro than single use. Keywords: Rhizomucor miehei, viability, proliferation, migration, expression


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 535
Author(s):  
Yang Yang ◽  
Yanyan Zhang ◽  
Yishu Yan ◽  
Qian Ji ◽  
Yutong Dai ◽  
...  

The diabetic wounds do not heal easily in part because they are susceptible to infection due to environmental influences. Wound dressing is crucial to wound healing, as it can basically protect the wound from external damages and provide a suitable microenvironment for tissue regeneration. In this study, a double-layer membrane that consists of chitosan sponge and decellularized bovine amniotic membrane (dBAM) has been developed by freeze-casting method. The results showed that the porous structure of the sponge layer improved the performances of blood coagulation and swelling. The dense dBAM can optimize the mechanical property of wound dressing. In vitro studies revealed that the bilayer membrane had favorable biocompatible, especially for human foreskin fibroblast cells (HFF-1) cell adhesion and proliferation. Moreover, the full-thickness skin defects of diabetic model mice that treated with bilayer membrane showed over 80% closure in 8 days. Our findings imply that the double-layer dressing has great potentials to be used in diabetic patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Patchara Punyamoonwongsa ◽  
Supattra Klayya ◽  
Warayuth Sajomsang ◽  
Chanikarn Kunyanee ◽  
Sasitorn Aueviriyavit

Silk sericin (SS) from the Bombyx mori silk cocoons has received much attention from biomedical scientists due to its outstanding properties, such as antioxidant, antibacterial, UV-resistant, and ability to release moisturizing factors. Unmodified SS does not self-assemble strongly enough to be used as a hydrogel wound dressing. Therefore, there is a need for suitable stabilization techniques to interlink the SS peptide chains or strengthen their structural cohesion. Here, we reported a method to form a silk semi-interpenetrating network (semi-IPN) structure through reacting with the short-chain poly(ethylene glycol) diacrylate (PEGDA) in the presence of a redox pair. Various hydrogels were prepared in aqueous media at the final SS/PEGDA weight percentages of 8/92, 15/85, and 20/80. Results indicated that all semi-IPN samples underwent a sol-gel transition within 70 min. The equilibrium water content (EWC) for all samples was found to be in the range of 70-80%, depending on the PEGDA content. Both the gelation time and the sol fraction decreased with the increased PEGDA content. This was due to the tightened network structure formed within the hydrogel matrices. Among all hydrogel samples, the 15/85 (SS/PEGDA) hydrogel displayed the maximum compressive strength (0.66 MPa) and strain (7.15%), higher than those of pure PEGDA. This implied a well-balanced molecular interaction within the SS/PEGDA/water systems. Based on the direct and indirect MTS assay, the 15/85 hydrogel showed excellent in vitro biocompatibility towards human dermal fibroblasts, representing a promising material for biomedical wound dressing in the future. A formation of a semi-IPN structure has thus proved to be one of the best strategies to extend a practical limit of using SS hydrogels for wound healing treatment or other biomedical hydrogel matrices in the future.


Sign in / Sign up

Export Citation Format

Share Document