scholarly journals Incorporation of CENP-A/CID into centromeres during early Drosophila embryogenesis does not require RNA polymerase II–mediated transcription

Chromosoma ◽  
2022 ◽  
Author(s):  
Samadri Ghosh ◽  
Christian F. Lehner

AbstractIn many species, centromere identity is specified epigenetically by special nucleosomes containing a centromere-specific histone H3 variant, designated as CENP-A in humans and CID in Drosophila melanogaster. After partitioning of centromere-specific nucleosomes onto newly replicated sister centromeres, loading of additional CENP-A/CID into centromeric chromatin is required for centromere maintenance in proliferating cells. Analyses with cultured cells have indicated that transcription of centromeric DNA by RNA polymerase II is required for deposition of new CID into centromere chromatin. However, a dependence of centromeric CID loading on transcription is difficult to reconcile with the notion that the initial embryonic stages appear to proceed in the absence of transcription in Drosophila, as also in many other animal species. To address the role of RNA polymerase II–mediated transcription for CID loading in early Drosophila embryos, we have quantified the effects of alpha-amanitin and triptolide on centromeric CID-EGFP levels. Our analyses demonstrate that microinjection of these two potent inhibitors of RNA polymerase II–mediated transcription has at most a marginal effect on centromeric CID deposition during progression through the early embryonic cleavage cycles. Thus, we conclude that at least during early Drosophila embryogenesis, incorporation of CID into centromeres does not depend on RNA polymerase II–mediated transcription.

2014 ◽  
Vol 25 (12) ◽  
pp. 1916-1924 ◽  
Author(s):  
David Öling ◽  
Rehan Masoom ◽  
Kristian Kvint

Ubp3 is a conserved ubiquitin protease that acts as an antisilencing factor in MAT and telomeric regions. Here we show that ubp3∆ mutants also display increased silencing in ribosomal DNA (rDNA). Consistent with this, RNA polymerase II occupancy is lower in cells lacking Ubp3 than in wild-type cells in all heterochromatic regions. Moreover, in a ubp3∆ mutant, unequal recombination in rDNA is highly suppressed. We present genetic evidence that this effect on rDNA recombination, but not silencing, is entirely dependent on the silencing factor Sir2. Further, ubp3∆ sir2∆ mutants age prematurely at the same rate as sir2∆ mutants. Thus our data suggest that recombination negatively influences replicative life span more so than silencing. However, in ubp3∆ mutants, recombination is not a prerequisite for aging, since cells lacking Ubp3 have a shorter life span than isogenic wild-type cells. We discuss the data in view of different models on how silencing and unequal recombination affect replicative life span and the role of Ubp3 in these processes.


1997 ◽  
Vol 110 (15) ◽  
pp. 1781-1791 ◽  
Author(s):  
M.A. Grande ◽  
I. van der Kraan ◽  
L. de Jong ◽  
R. van Driel

We have investigated the spatial relationship between sites containing newly synthesized RNA and domains containing proteins involved in transcription, such as RNA polymerase II and the transcription factors TFIIH, Oct1, BRG1, E2F-1 and glucocorticoid receptors, using dual immunofluorescence labelling followed by confocal microscopy on cultured cells. As expected, a high degree of colocalisation between the RNA polymerase II and sites containing newly synthesised RNA was observed. Like the newly synthesised RNA and the RNA polymerase II, we found that all the transcription factors that we studied are distributed more or less homogeneously throughout the nucleoplasm, occupying numerous small domains. In addition to these small domains, TFIIH was found concentrated in coiled bodies and Oct1 in a single large domain of about 1.5 microm in 30% of the cells in an asynchronous HeLa cell culture. Remarkably, we found little or no relationship between the spatial distribution of the glucocorticoid receptor, Oct1 and E2F-1 on the one hand and RNA polymerase II and transcription sites on the other hand. In contrast, a significant but incomplete overlap was observed between the spatial distributions of transcription sites and BRG1 and TFIIH. These results indicate that many of the transcription factor-rich nuclear domains are not actively involved in transcription. They may represent incomplete transcription initiation complexes, inhibitory complexes, or storage sites.


2019 ◽  
Vol 47 (20) ◽  
pp. 10754-10770 ◽  
Author(s):  
Anming Huang ◽  
Leopold Kremser ◽  
Fabian Schuler ◽  
Doris Wilflingseder ◽  
Herbert Lindner ◽  
...  

Abstract Centromeres are specialized chromosomal regions epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A is required for kinetochore formation which is essential for chromosome segregation during mitosis. Spatial restriction of CENP-A to the centromere is tightly controlled. Its overexpression results in ectopic incorporation and the formation of potentially deleterious neocentromeres in yeast, flies and in various human cancers. While the contribution of posttranslational modifications of CENP-A to these processes has been studied in yeast and mammals to some extent, very little is known about Drosophila melanogaster. Here, we show that CENP-A is phosphorylated at serine 20 (S20) by casein kinase II and that in mitotic cells, the phosphorylated form is enriched on chromatin. Importantly, our results reveal that S20 phosphorylation regulates the turn-over of prenucleosomal CENP-A by the SCFPpa-proteasome pathway and that phosphorylation promotes removal of CENP-A from ectopic but not from centromeric sites in chromatin. We provide multiple lines of evidence for a crucial role of S20 phosphorylation in controlling restricted incorporation of CENP-A into centromeric chromatin in flies. Modulation of the phosphorylation state of S20 may provide the cells with a means to fine-tune CENP-A levels in order to prevent deleterious loading to extra-centromeric sites.


1999 ◽  
Vol 19 (4) ◽  
pp. 2672-2680 ◽  
Author(s):  
Ayelet Sheffer ◽  
Mazal Varon ◽  
Mordechai Choder

ABSTRACT Rpb4 and Rpb7 are two yeast RNA polymerase II (Pol II) subunits whose mechanistic roles have recently started to be deciphered. Although previous data suggest that Rpb7 can stably interact with Pol II only as a heterodimer with Rpb4, RPB7 is essential for viability, whereas RPB4 is essential only during some stress conditions. To resolve this discrepancy and to gain a better understanding of the mode of action of Rpb4, we took advantage of the inability of cells lacking RPB4 (rpb4Δ, containing Pol IIΔ4) to grow above 30°C and screened for genes whose overexpression could suppress this defect. We thus discovered that overexpression of RPB7 could suppress the inability ofrpb4Δ cells to grow at 34°C (a relatively mild temperature stress) but not at higher temperatures. Overexpression ofRPB7 could also partially suppress the cold sensitivity ofrpb4Δ strains and fully suppress their inability to survive a long starvation period (stationary phase). Notably, however, overexpression of RPB4 could not override the requirement for RPB7. Consistent with the growth phenotype, overexpression of RPB7 could suppress the transcriptional defect characteristic of rpb4Δ cells during the mild, but not during a more severe, heat shock. We also demonstrated, through two reciprocal coimmunoprecipitation experiments, a stable interaction of the overproduced Rpb7 with Pol IIΔ4. Nevertheless, fewer Rpb7 molecules interacted with Pol IIΔ4 than with wild-type Pol II. Thus, a major role of Rpb4 is to augment the interaction of Rpb7 with Pol II. We suggest that Pol IIΔ4 contains a small amount of Rpb7 that is sufficient to support transcription only under nonstress conditions. When RPB7 is overexpressed, more Rpb7 assembles with Pol IIΔ4, enough to permit appropriate transcription also under some stress conditions.


EMBO Reports ◽  
2001 ◽  
Vol 2 (9) ◽  
pp. 808-813 ◽  
Author(s):  
Gerhard Mittler ◽  
Elisabeth Kremmer ◽  
H Th. Marc Timmers ◽  
Michael Meisterernst

Sign in / Sign up

Export Citation Format

Share Document