Remodelling of arabinoxylan in wheat (Triticum aestivum) endosperm cell walls during grain filling

Planta ◽  
2008 ◽  
Vol 229 (3) ◽  
pp. 667-680 ◽  
Author(s):  
G. A. Toole ◽  
C. Barron ◽  
G. Le Gall ◽  
I. J. Colquhoun ◽  
P. R. Shewry ◽  
...  
2011 ◽  
Vol 59 (13) ◽  
pp. 7075-7082 ◽  
Author(s):  
Geraldine A. Toole ◽  
Gwénaëlle Le Gall ◽  
Ian J. Colquhoun ◽  
Phil Johnson ◽  
Zoltan Bedö ◽  
...  

2019 ◽  
Vol 10 (8) ◽  
pp. 4674-4684 ◽  
Author(s):  
Konstantinos Korompokis ◽  
Niels De Brier ◽  
Jan A. Delcour

Intact wheat endosperm cell walls reduce intracellular starch swelling and retard its in vitro digestion by acting as physical barriers to amylolytic enzymes.


2012 ◽  
Vol 63 (8) ◽  
pp. 3031-3045 ◽  
Author(s):  
Hunter K. C. Laidlaw ◽  
Jelle Lahnstein ◽  
Rachel A. Burton ◽  
Geoffrey B. Fincher ◽  
Stephen A. Jobling

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7738
Author(s):  
Zhaoan Sun ◽  
Shuxia Wu ◽  
Biao Zhu ◽  
Yiwen Zhang ◽  
Roland Bol ◽  
...  

Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (−N) and nitrogen fertilized (+N, 250 kg N ha−1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the −N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.


Sign in / Sign up

Export Citation Format

Share Document