Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants

Planta ◽  
2000 ◽  
Vol 211 (6) ◽  
pp. 807-815 ◽  
Author(s):  
Emma Weston ◽  
Keira Thorogood ◽  
Giovanna Vinti ◽  
Enrique López-Juez
Author(s):  
Yun Kong ◽  
Youbin Zheng

To examine whether phytochromes contribute to blue-light-mediated stem elongation, plant phenotypic responses were investigated in wild type Arabidopsis thaliana (Col-0), and its quintuple phytochrome (phyA phyB phyC phyD phyE) mutant plants under the following light treatments: (1) R, a pure red light from 660-nm LED; (2) B, a pure blue light from 455-nm LED; (3) BR, a impure blue light from LED combination of 94% B and 6% R; and (4) BRF, another impure blue light from LED combination of BR and 6 µmol m−2 s−1 of FR (735 nm). A photosynthetic photon flux density of ≈100 μmol m−2 s−1 was provided for all the light treatments. The calculated phytochrome photoequilibrium was 0.89, 0.50, 0.69, and 0.60 for R, B, BR, and BRF, respectively, indicating a higher phytochrome activity under R and BR than B and BRF. After 18 days of light treatment, B or BRF increased main stem length in wild-type plants compared with R, but BR had an inhibition effect similar to R. Also, B and BRF relative to R or BR induced earlier flowering and reduced leaf size in wild type plants, showing typical shade-avoidance responses. In phytochrome-deficient mutant plants, the above shade-avoidance responses were inhibited under B or BRF. However, hypocotyl length, a growth trait characterizing the de-etiolation stage, was reduced under B, BR and BRF vs. R regardless of phytochrome absence. These findings suggest that for mature Arabidopsis plants, phytochrome plays a role in blue-light-mediated stem elongation and the associated shade-avoidance responses.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


Science ◽  
2013 ◽  
Vol 341 (6150) ◽  
pp. 1103-1106 ◽  
Author(s):  
Ruben Vanholme ◽  
Igor Cesarino ◽  
Katarzyna Rataj ◽  
Yuguo Xiao ◽  
Lisa Sundin ◽  
...  

Lignin is a major component of plant secondary cell walls. Here we describe caffeoyl shikimate esterase (CSE) as an enzyme central to the lignin biosynthetic pathway. Arabidopsis thaliana cse mutants deposit less lignin than do wild-type plants, and the remaining lignin is enriched in p-hydroxyphenyl units. Phenolic metabolite profiling identified accumulation of the lignin pathway intermediate caffeoyl shikimate in cse mutants as compared to caffeoyl shikimate levels in the wild type, suggesting caffeoyl shikimate as a substrate for CSE. Accordingly, recombinant CSE hydrolyzed caffeoyl shikimate into caffeate. Associated with the changes in lignin, the conversion of cellulose to glucose in cse mutants increased up to fourfold as compared to that in the wild type upon saccharification without pretreatment. Collectively, these data necessitate the revision of currently accepted models of the lignin biosynthetic pathway.


1988 ◽  
Vol 47 (3) ◽  
pp. 425-431 ◽  
Author(s):  
GERALD F. DEITZER ◽  
BENJAMIN A. Horwitz ◽  
Jonathan Gressel

2010 ◽  
Vol 48 (8) ◽  
pp. 697-702 ◽  
Author(s):  
Nisreen A. AL-Quraan ◽  
Robert D. Locy ◽  
Narendra K. Singh

2011 ◽  
Vol 22 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Danica E. Goggin ◽  
Kathryn J. Steadman

AbstractSeeds have long been a model system for studying the intricacies of phytochrome-mediated light perception and signalling. However, very little is known about how they perceive blue and green light. Cryptochromes and phototropins, the major blue-light receptors in plants, are increasingly well-studied in vegetative tissues, but their role in light perception in seeds largely remains a mystery. Green light elicits a number of responses in plants that cannot be explained by the action of any of the known photoreceptors, and some seeds are apparently also capable of perceiving green light. Here, the responses of seeds to blue and green light are collated from a thorough examination of the literature and considered from the perspective of the potential photoreceptor(s) mediating them. Knowledge of how seeds perceive wavelengths that are suboptimal for phytochrome activation could help to improve germination and seedling establishment for both crop and native species.


2013 ◽  
Vol 765-767 ◽  
pp. 2971-2975 ◽  
Author(s):  
Xue Gong ◽  
Ming Li Liu ◽  
Li Jun Zhang ◽  
Wei Liu ◽  
Che Wang

Sucrose transporters (SUCs or SUTs) are considered as the important carriers and responsible for the loading, unloading and distribution of sucrose, but at present there is no report that SUCs are involved in sucrose distribution and metabolism under drought stress at the whole-plant level. AtSUC4, as the unique member of SUT4-clade inArabidopsis thaliana, may be important for plant stress tolerance. Here, by analyzing two homozygous mutation lines ofAtSUC4(Atsuc4-1andAtsuc4-2), we found drought stress induced higher sucrose, lower fructose and glucose contents in shoots, and lower sucrose, higher fructose and glucose contents in roots of these mutants compared with the wild-type (WT), leading to an imbalance of sucrose distribution, fructose and glucose (sucrose metabolites) accumulation changes at the whole-plant level. Thus we believe thatAtSUC4regulates sucrose distribution and metabolism in response to drought stress.


Sign in / Sign up

Export Citation Format

Share Document