Temporal lagged relationship between a vegetation index and cutaneous leishmaniasis cases in Colombia: an analysis implementing a distributed lag nonlinear model

2020 ◽  
Vol 119 (3) ◽  
pp. 1075-1082 ◽  
Author(s):  
Juan David Gutiérrez-Torres
2011 ◽  
Vol 119 (12) ◽  
pp. 1719-1725 ◽  
Author(s):  
Yuming Guo ◽  
Adrian G Barnett ◽  
Xiaochuan Pan ◽  
Weiwei Yu ◽  
Shilu Tong

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhinghui Wang ◽  
Ji Peng ◽  
Peiyi Liu ◽  
Yanran Duan ◽  
Suli Huang ◽  
...  

Abstract Background Stroke, especially ischemic stroke (IS), has been a severe public health problem around the world. However, the association between air pollution and ischemic stroke remains ambiguous. Methods A total of 63, 997 IS cases aged 18 years or above in Shenzhen were collected from 2008 to 2014. We used the time-stratified case-crossover design combining with distributed lag nonlinear model (DLNM) to estimate the association between air pollution and IS onset. Furthermore, this study explored the variability across gender and age groups. Results The cumulative exposure-response curves were J-shaped for SO2, NO2 and PM10, and V-shaped for O3, and crossed over the relative risk (RR) of one. The 99th, 50th (median) and 1st percentiles of concentration (μg/m3) respectively were 37.86, 10.06, 3.71 for SO2, 116.26, 41.29, 18.51 for NO2, 145.94, 48.29, 16.14 for PM10, and 111.57, 49.82, 16.00 for O3. Extreme high-SO2, high-NO2, high-PM10, high-O3, and low-O3 concentration increased the risk of IS, with the maximum RR values and 95% CIs: 1.50(1.22, 1.84) (99th vs median) at 0–12 lag days, 1.37(1.13, 1.67) (99th vs median) at 0–10 lag days, 1.26(1.04, 1.53) (99th vs median) at 0–12 lag days, 1.25(1.04, 1.49) (99th vs median) at 0–14 lag days, and 1.29(1.03, 1.61) (1st vs median) at 0–14 lag days, respectively. The statistically significant minimal RR value and 95% CI was 0.79(0.66,0.94) at 0–10 lag days for extreme low-PM10. The elderly aged over 65 years were susceptible to extreme pollution conditions. Difference from the vulnerability of males to extreme high-SO2, high-NO2 and low-O3, females were vulnerable to extreme high-PM10 and high-O3. Comparing with the elderly, adults aged 18–64 year were immune to extreme low-NO2 and low-PM10. However, no association between CO and IS onset was found. Conclusions SO2, NO2, PM10 and O3 exerted non-linear and delayed influence on IS, and such influence varied with gender and age. These findings may have significant public health implications for the prevention of IS.


2018 ◽  
Vol 30 (4) ◽  
pp. 361-368 ◽  
Author(s):  
Mohammad Taghi Moghadamnia ◽  
Ali Ardalan ◽  
Alireza Mesdaghinia ◽  
Kazem Naddafi ◽  
Mir Saeed Yekaninejad

The relationship between apparent temperature and cardiovascular disease (CVD) mortality was studied in Rasht, Iran, from 2005 to 2014. The effects of apparent temperature on CVD mortality were investigated using the distributed lag nonlinear model. Data on all types of cardiovascular mortality cases according to the International Classification of Diseases were collected from the only cardiovascular hospital in Rasht, and the meteorological variables were obtained from Rasht Meteorological Center during the period of study. Our findings showed that low temperatures had significant impacts on CVD mortality, and a reverse J-shaped temperature-mortality relationship was found. Moreover, immediate effects of hot temperatures on CVD mortality with the strongest effects on the same day but delayed effects of cold temperature was observed. This study showed that exposure to both hot and cold apparent temperatures was associated with increased cardiovascular mortality in Rasht.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Reija Ruuhela ◽  
Athanasios Votsis ◽  
Jaakko Kukkonen ◽  
Kirsti Jylhä ◽  
Susanna Kankaanpää ◽  
...  

Urbanization and ongoing climate change increase the exposure of the populations to heat stress, and the urban heat island (UHI) effect may magnify heat-related mortality, especially during heatwaves. We studied temperature-related mortality in the city of Helsinki—with urban and suburban land uses—and in the surrounding Helsinki-Uusimaa hospital district (HUS-H, excluding Helsinki)—with more rural types of land uses—in southern Finland for two decades, 2000–2018. Dependence of the risk of daily all-cause deaths (all-age and 75+ years) on daily mean temperature was modelled using the distributed lag nonlinear model (DLNM). The modelled relationships were applied in assessing deaths attributable to four intensive heatwaves during the study period. The results showed that the heat-related mortality risk was substantially higher in Helsinki than in HUS-H, and the mortality rates attributable to four intensive heatwaves (2003, 2010, 2014 and 2018) were about 2.5 times higher in Helsinki than in HUS-H. Among the elderly, heat-related risks were also higher in Helsinki, while cold-related risks were higher in the surrounding region. The temperature ranges recorded in the fairly coarse resolution gridded datasets were not distinctly different in the two considered regions. It is therefore probable that the modelling underestimated the actual exposure to the heat stress in Helsinki. We also studied the modifying, short-term impact of air quality on the modelled temperature-mortality association in Helsinki; this effect was found to be small. We discuss a need for higher resolution data and modelling the UHI effect, and regional differences in vulnerability to thermal stress.


2016 ◽  
Vol 144 (10) ◽  
pp. 2217-2229 ◽  
Author(s):  
A. MOLLALO ◽  
E. KHODABANDEHLOO

SUMMARYZoonotic cutaneous leishmaniasis (ZCL) constitutes a serious public health problem in many parts of the world including Iran. This study was carried out to assess the risk of the disease in an endemic province by developing spatial environmentally based models in yearly intervals. To fill the gap of underestimated true burden of ZCL and short study period, analytical hierarchy process (AHP) and fuzzy AHP decision-making methods were used to determine the ZCL risk zones in a Geographic Information System platform. Generated risk maps showed that high-risk areas were predominantly located at the northern and northeastern parts in each of the three study years. Comparison of the generated risk maps with geocoded ZCL cases at the village level demonstrated that in both methods more than 90%, 70% and 80% of the cases occurred in high and very high risk areas for the years 2010, 2011, and 2012, respectively. Moreover, comparison of the risk categories with spatially averaged normalized difference vegetation index (NDVI) images and a digital elevation model of the study region indicated persistent strong negative relationships between these environmental variables and ZCL risk degrees. These findings identified more susceptible areas of ZCL and will help the monitoring of this zoonosis to be more targeted.


2020 ◽  
Author(s):  
Yichen Chen ◽  
Xiaopan Li ◽  
Hanyi Chen ◽  
Lianghong Sun ◽  
Tao Lin ◽  
...  

Abstract Background: Air pollution is a severe and dangerous public health problem. However, the effect of ambient gaseous air pollution exposure on years of life lost (YLL) attributable to chronic obstructive pulmonary disease (COPD) mortality has not been quantitatively verified.Methods: We collected the data of 12,781 COPD deaths and ambient gaseous air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), Carbon monoxide (CO), and ozone (O3), during the years 2013-2019 in the Shanghai Pudong New Area (PNA). Then we performed a time-stratified case-crossover study combined with a distributed lag nonlinear model (DLNM) to estimate the impact of those air pollutants on daily COPD deaths counts and YLL. The confounders including long-term trend and meteorological factors have been controlled for, and effects of age and educational attainment as effect modifiers have also been evaluated.Results: During the 2013-2019 time frame, increases of 10μg/m3 in SO2 and NO2 were associated with a 4.93% (95% CI: 1.47%, 8.50%) and 1.47% (95% CI: 0.14%, 2.82%) in daily COPD death counts at lag0-1day, respectively, a 2.52 (95% CI: 0.31, 4.72) YLL increase and 0.85 (95% CI: 0.01, 1.68) YLL increase at lag0-1day, respectively. A 1mg/m3 increase in CO was associated with a 9.46% (95% CI: 0.40%, 19.35%) at lag0 increase in daily COPD death counts. No significant impact from O3 on both daily COPD deaths counts and YLL (P>0.05). The impact of gaseous air pollutants on the daily COPD death count and YLL were significant in populations of older adults and the lower educated population, while an insignificant effect was observed in the younger population and higher educated population. The YLL due to COPD related to SO2 and CO for the lower educated population was significantly higher than those for the higher educated population.Conclusion: Reducing specific gaseous air pollutants will help to control COPD deaths and improve the population’s life expectancy.


Sign in / Sign up

Export Citation Format

Share Document