scholarly journals Molecular variation among virulent and avirulent strains of the quarantine nematode Bursaphelenchus xylophilus

Author(s):  
Anna Filipiak ◽  
Tadeusz Malewski ◽  
Ewa Matczyńska ◽  
Marek Tomalak

Abstract Bursaphelenchus xylophilus is an emerging pathogenic nematode that is responsible for a devastating epidemic of pine wilt disease worldwide, causing severe ecological damage and economic losses to forestry. Two forms of this nematode have been reported, i.e., with strong and weak virulence, commonly referred as virulent and avirulent strains. However, the pathogenicity-related genes of B. xylophilus are not sufficiently characterized. In this study, to find pathogenesis related genes we re-sequenced and compared genomes of two virulent and two avirulent populations. We identified genes affected by genomic variation, and functional annotation of those genes indicated that some of them might play potential roles in pathogenesis. The performed analysis showed that both avirulent populations differed from the virulent ones by 1576 genes with high impact variants. Demonstration of genetic differences between virulent and avirulent strains will provide effective methods to distinguish these two nematode virulence forms at the molecular level. The reported results provide basic information that can facilitate development of a better diagnosis for B. xylophilus isolates/strains which present different levels of virulence and better understanding of the molecular mechanism involved in the development of the PWD.

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3729
Author(s):  
Weibin Wu ◽  
Zhenbang Zhang ◽  
Lijun Zheng ◽  
Chongyang Han ◽  
Xiaoming Wang ◽  
...  

Pine wilt disease (PWD) caused by pine wood nematode (PWN, Bursaphelenchus xylophilus) originated in North America and has since spread to Asia and Europe. PWN is currently a quarantine object in 52 countries. In recent years, pine wilt disease has caused considerable economic losses to the pine forest production industry in China, as it is difficult to control. Thus, one of the key strategies for controlling pine wilt disease is to identify epidemic points as early as possible. The use of hyperspectral cameras mounted on drones is expected to enable PWD monitoring over large areas of forest, and hyperspectral images can reflect different stages of PWD. The trend of applying hyperspectral techniques to the monitoring of pine wilt disease is analyzed, and the corresponding strategies to address the existing technical problems are proposed, such as data collection of early warning stages, needs of using unmanned aerial vehicles (UAVs), and establishment of models after preprocessing.


1988 ◽  
Vol 54 (5) ◽  
pp. 606-615 ◽  
Author(s):  
Keiko KURODA ◽  
Toshihiro YAMADA ◽  
Kazuhiko MINEO ◽  
Hirotada TAMURA

2011 ◽  
Vol 9 (2) ◽  
pp. 272-275 ◽  
Author(s):  
Albina R. Franco ◽  
Carla Santos ◽  
Mariana Roriz ◽  
Rui Rodrigues ◽  
Marta R. M. Lima ◽  
...  

Pine wilt disease, caused by the pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle, is originating severe infections in pine trees. The disease is detected when external symptoms appear (e.g. needle chlorosis), but trees could remain asymptomatic for long periods and serve as a long-term host. The primary goal of this study was to assess the effect of inoculation with an avirulent isolate of B. xylophilus (C14-5) on different Pinus spp. seedlings (P. sylvestris, P. nigra, P. pinea and P. pinaster). At the same time, seedlings were also inoculated with a virulent strain, HF, in order to compare the phenotypic and genomic results of the two types of inoculations. The effect of inoculation was determined in terms of expression of various Pinus genes potentially involved in the response to the disease.The results suggest that P. pinea and P. nigra are more resistant to infection by the nematode than P. sylvestris and P. pinaster. The phenotypic and genetic differences were more marked among P. pinea and P. pinaster.


2019 ◽  
Vol 49 (6) ◽  
pp. e12564
Author(s):  
Marta Salgueiro Alves ◽  
Anabela Pereira ◽  
Cláudia Vicente ◽  
Manuel Mota ◽  
Isabel Henriques

Nematology ◽  
2006 ◽  
Vol 8 (6) ◽  
pp. 869-879 ◽  
Author(s):  
Kazuyoshi Futai ◽  
Natsumi Kanzaki ◽  
Yuko Takeuchi

AbstractPine wilt disease causes ecological and economic damage in Japanese pine forests in spite of intensive effort to protect them from the pine wood nematode, Bursaphelenchus xylophilus. Pine trees infected with B. xylophilus emit a characteristic bouquet of volatile compounds bioactive to the vector beetle of the nematode, Monochamus alternatus, and potentially affecting symptom development inside the trees. To investigate the qualitative and quantitative properties of volatile compounds in the field, we profiled the volatile emissions in two Japanese black pine stands, one naturally suffering from pine wilt disease and the other artificially inoculated with B. xylophilus. In both pine stands, the emission of some terpenoids from the infected trees such as (−)-α-pinene, began to increase in summer, overlapping the oviposition season of the vector beetle, but peaked in the summer and autumn. These data suggest that the beetles may not necessarily depend on the tremendous quantity of volatiles alone when they search for suitable trees on which to oviposit.


2012 ◽  
Vol 134 (3) ◽  
pp. 521-532 ◽  
Author(s):  
Xin-rong Wang ◽  
Xi Cheng ◽  
Ya-dong Li ◽  
Jin-ai Zhang ◽  
Zhi-fen Zhang ◽  
...  

Nematology ◽  
2011 ◽  
Vol 13 (6) ◽  
pp. 653-659 ◽  
Author(s):  
Katsumi Togashi ◽  
Hiroko Maezono ◽  
Koji Matsunaga ◽  
Satoshi Tamaki

AbstractTo determine the relationship between resistance to pine wilt disease and the inhibition of nematode systemic dispersal in Pinus densiflora, a suspension of 200 Bursaphelenchus xylophilus was placed on the upper cut end of 5-cm-long, living or boiled branch sections of 17 clones of pine that had different resistance levels. Significantly more nematodes passed through boiled sections than living sections during 24 h. Living branches of the resistant P. densiflora clone group significantly suppressed the dispersal of B. xylophilus compared with those of the susceptible group, suggesting that the inhibition of nematode systemic dispersal was involved in the resistance mechanism of selected disease-resistant pine clones. However, there was no significant correlation between the resistance class and the mean number of nematodes passing through live branch sections within the resistant clone group. The reason for the lack of correlation is discussed in relation with the resistance mechanism.


Sign in / Sign up

Export Citation Format

Share Document