Divergent patterns of impact of environmental conditions on life history traits in two populations of a long-distance migratory bird

Oecologia ◽  
2009 ◽  
Vol 159 (4) ◽  
pp. 859-872 ◽  
Author(s):  
Javier Balbontín ◽  
Anders P. Møller ◽  
Ignacio G. Hermosell ◽  
Alfonso Marzal ◽  
Maribel Reviriego ◽  
...  
2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


2019 ◽  
Vol 21 (9) ◽  
pp. 2963-2981 ◽  
Author(s):  
Kayleigh G. Nielson ◽  
Karen M. Gill ◽  
Abraham E. Springer ◽  
Jeri D. Ledbetter ◽  
Lawrence E. Stevens ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
G. Masó ◽  
J. Kaufmann ◽  
H. Clavero ◽  
P. S. Fitze

Abstract Whether and how differences in environmental predictability affect life-history traits is controversial and may depend on mean environmental conditions. Solid evidence for effects of environmental predictability are lacking and thus, the consequences of the currently observed and forecasted climate-change induced reduction of precipitation predictability are largely unknown. Here we experimentally tested whether and how changes in the predictability of precipitation affect growth, reproduction, and survival of common lizard Zootoca vivipara. Precipitation predictability affected all three age classes. While adults were able to compensate the treatment effects, yearlings and juvenile females were not able to compensate negative effects of less predictable precipitation on growth and body condition, respectively. Differences among the age-classes’ response reflect differences (among age-classes) in the sensitivity to environmental predictability. Moreover, effects of environmental predictability depended on mean environmental conditions. This indicates that integrating differences in environmental sensitivity, and changes in averages and the predictability of climatic variables will be key to understand whether species are able to cope with the current climatic change.


2016 ◽  
Vol 12 (6) ◽  
pp. 20160101 ◽  
Author(s):  
Alexis Rutschmann ◽  
Donald B. Miles ◽  
Jean Clobert ◽  
Murielle Richard

Life-history traits involved in trade-offs are known to vary with environmental conditions. Here, we evaluate the response of the trade-off between ‘offspring number’ versus ‘energy invested per offspring’ to ambient temperature in 11 natural populations of the common lizard, Zootoca vivipara . We provide evidence at both the intra- and interpopulation levels that the trade-off is reduced with an increase in air temperature. If this effect enhances current individual fitness, it may lead to an accelerated pace of life in warmer environments and could ultimately increase adult mortality. In the context of global warming, our results advocate the need for more studies in natural populations to explore interactions between life-history traits' trade-offs and environmental conditions.


Oikos ◽  
2016 ◽  
Vol 126 (1) ◽  
pp. 61-72 ◽  
Author(s):  
Nathan R. Senner ◽  
Maria Stager ◽  
Brett K. Sandercock

2021 ◽  
Vol 8 (2) ◽  
pp. 120-130
Author(s):  
Imane Halassi ◽  
Ali Elafri ◽  
Ismahan Halassi ◽  
Hichem Amari ◽  
Moussa Houhamdi

Laboratory observations on rearing experiment of Odonata serve to answer many evolutionary and ecological questions. In order to evidences the role of species parental habitat provenience in the development behaviour of their offspring, we surveyed several life history traits of two rearing populations of Sympetrum meridionale (Anisoptera: Sympetrinae), coming from two different habitats across north-eastern Algeria. The first one is a RAMSAR wetland called ‘Mekhada’ (a perennial water body), and the second one is a temporary pond located at “Maouna” Mountain (1400 m altitude). Overall, the development patterns of the two populations of dragonflies vary with the type of habitat the parental generation of the species occupy (Factorial ANCOVA: all p < 0.05). Firstly, egg mortality was very low in dragonfly population inhabiting the RAMSAR wetland compared of those belonging to Maouna Mountain. Secondly new-borne larvae stemming from females inhabiting the Mekhada wetland develop more slowly than did those coming from the “Maouna” Mountain pond. Finally, larvae of Sympetrum meridionale stemming from females inhabiting the temporary wetland were heavier than those inhabiting the perennial wetland. Such studies will ads considerably to our understanding of the mechanisms that are responsible for possible effects of environmental changes on life history traits of dragonflies across the southern part of their distribution range.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1381
Author(s):  
Raimundas Petrokas ◽  
Virgilijus Baliuckas ◽  
Michael Manton

Developing forest harvesting regimes that mimic natural forest dynamics requires knowledge on typical species behaviors and how they respond to environmental conditions. Species regeneration and survival after disturbance depends on a species’ life history traits. Therefore, forest succession determines the extent to which forest communities are able to cope with environmental change. The aim of this review was to (i) review the life history dynamics of hemi-boreal tree species in the context of ecological succession, and (ii) categorize each of these tree species into one of four successional development groups (gap colonizers, gap competitors, forest colonizers, or forest competitors). To do this we embraced the super-organism approach to plant communities using their life history dynamics and traits. Our review touches on the importance and vulnerability of these four types of successional groups, their absence and presence in the community, and how they can be used as a core component to evaluate if the development of the community is progressing towards the restoration of the climatic climax. Applying a theoretical framework to generate ideas, we suggest that forests should be managed to maintain environmental conditions that support the natural variety and sequence of tree species’ life histories by promoting genetic invariance and to help secure ecosystem resilience for the future. This could be achieved by employing harvesting methods that emulate natural disturbances and regeneration programs that contribute to maintenance of the four successional groups.


2015 ◽  
Vol 117 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Joan van Baaren ◽  
Claire M.-S. Dufour ◽  
Jean-Sébastien Pierre ◽  
Véronique Martel ◽  
Philippe Louâpre

Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 598
Author(s):  
Carla L. Atkinson ◽  
Daniel D. Knapp ◽  
Lora L. Smith

Seasonally inundated wetlands contribute to biodiversity support and ecosystem function at the landscape scale. These temporally dynamic ecosystems contain unique assemblages of animals adapted to cyclically wet–dry habitats. As a result of the high variation in environmental conditions, wetlands serve as hotspots for animal movement and potentially hotspots of biogeochemical activity and migratory transport of nutrient subsidies. Most amphibians are semi-aquatic and migrate between isolated wetlands and the surrounding terrestrial system to complete their life cycle, with rainfall and other environmental factors affecting the timing and magnitude of wetland export of juveniles. Here we used a long-term drift fence study coupled with system-specific nutrient content data of amphibians from two small wetlands in southeastern Georgia, USA. We couple environmental data with count data of juveniles exiting wetlands to explore the controls of amphibian diversity, production and export and the amphibian life-history traits associated with export over varying environmental conditions. Our results highlight the high degree of spatial and temporal variability in amphibian flux with hydroperiod length and temperature driving community composition and overall biomass and nutrient fluxes. Additionally, specific life-history traits, such as development time and body size, were associated with longer hydroperiods. Our findings underscore the key role of small, isolated wetlands and their hydroperiod characteristics in maintaining amphibian productivity and community dynamics.


Sign in / Sign up

Export Citation Format

Share Document