scholarly journals A Spanner for the Day After

2020 ◽  
Vol 64 (4) ◽  
pp. 1167-1191 ◽  
Author(s):  
Kevin Buchin ◽  
Sariel Har-Peled ◽  
Dániel Oláh

AbstractWe show how to construct a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner over a set $${P}$$ P of n points in $${\mathbb {R}}^d$$ R d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $${\vartheta },\varepsilon \in (0,1)$$ ϑ , ε ∈ ( 0 , 1 ) , the computed spanner $${G}$$ G has $$\begin{aligned} {{\mathcal {O}}}\bigl (\varepsilon ^{-O(d)} {\vartheta }^{-6} n(\log \log n)^6 \log n \bigr ) \end{aligned}$$ O ( ε - O ( d ) ϑ - 6 n ( log log n ) 6 log n ) edges. Furthermore, for anyk, and any deleted set $${{B}}\subseteq {P}$$ B ⊆ P of k points, the residual graph $${G}\setminus {{B}}$$ G \ B is a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner for all the points of $${P}$$ P except for $$(1+{\vartheta })k$$ ( 1 + ϑ ) k of them. No previous constructions, beyond the trivial clique with $${{\mathcal {O}}}(n^2)$$ O ( n 2 ) edges, were known with this resilience property (i.e., only a tiny additional fraction of vertices, $$\vartheta |B|$$ ϑ | B | , lose their distance preserving connectivity). Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black-box fashion.

Geophysics ◽  
1978 ◽  
Vol 43 (7) ◽  
pp. 1543-1545
Author(s):  
M. R. Foster ◽  
C. E. Laird

This paper is basically an extension to higher dimensions of the one‐dimensional theory developed by Foster (1975). We begin by briefly reviewing these ideas. In one dimension, the equation of motion for the particle displacement u is given by [Formula: see text]where [Formula: see text] is the vertical traveltime, and [Formula: see text] is the reflectivity function. ρ and c are, respectively, the density and compressional velocity.


2008 ◽  
Vol 45 (03) ◽  
pp. 879-887 ◽  
Author(s):  
Nader Ebrahimi

Nanosystems are devices that are in the size range of a billionth of a meter (1 x 10-9) and therefore are built necessarily from individual atoms. The one-dimensional nanosystems or linear nanosystems cover all the nanosized systems which possess one dimension that exceeds the other two dimensions, i.e. extension over one dimension is predominant over the other two dimensions. Here only two of the dimensions have to be on the nanoscale (less than 100 nanometers). In this paper we consider the structural relationship between a linear nanosystem and its atoms acting as components of the nanosystem. Using such information, we then assess the nanosystem's limiting reliability which is, of course, probabilistic in nature. We consider the linear nanosystem at a fixed moment of time, say the present moment, and we assume that the present state of the linear nanosystem depends only on the present states of its atoms.


2002 ◽  
Vol 2 (Special) ◽  
pp. 578-595
Author(s):  
N. Konno

In this paper we consider limit theorems, symmetry of distribution, and absorption problems for two types of one-dimensional quantum random walks determined by $2 \times 2$ unitary matrices using our PQRS method. The one type was introduced by Gudder in 1988, and the other type was studied intensively by Ambainis et al. in 2001. The difference between both types of quantum random walks is also clarified.


1994 ◽  
Vol 49 (9) ◽  
pp. 856-860
Author(s):  
Barbara Drossel ◽  
Siegfried Clar ◽  
Franz Schwabl

Abstract We modify the rules of the self-organized critical forest-fire model in one dimension by allowing the fire to jum p over holes of ≤ k sites. An analytic calculation shows that not only the size distribution of forest clusters but also the size distribution of fires is characterized by the same critical exponent as in the nearest-neighbor model, i.e. the critical behavior of the model is universal. Computer simulations confirm the analytic results.


Author(s):  
Junyu Lin ◽  
Shijin Ding

Using the differential–difference method and viscosity vanishing approach, we obtain the existence and uniqueness of the global smooth solution to the periodic initial-value problem of the inhomogeneous, non-automorphic Landau–Lifshitz equation without Gilbert damping terms in one dimension. To establish the uniform estimates, we use some identities resulting from the fact and the fact that the vectors form an orthogonal base of the space .


2013 ◽  
Vol 785-786 ◽  
pp. 1418-1422
Author(s):  
Ai Gao

In this paper, we provide a partition of the roots of a class of transcendental equation by using τ-D decomposition ,where τ>0,a>0,b<0 and the coefficient b is fixed.According to the partition, one can determine the stability domain of the equilibrium and get a Hopf bifurcation diagram that can provide the Hopf bifurcation curves in the-parameter space, for one dimension delay differential equation .


2004 ◽  
Vol 22 (1) ◽  
pp. 69-74 ◽  
Author(s):  
F. OSMAN ◽  
R. BEECH ◽  
H. HORA

This article presents a numerical and theoretical study of the generation and propagation of oscillation in the semiclassical limit ħ → 0 of the nonlinear paraxial equation. In a general setting of both dimension and nonlinearity, the essential differences between the “defocusing” and “focusing” cases are observed. Numerical comparisons of the oscillations are made between the linear (“free”) and the cubic (defocusing and focusing) cases in one dimension. The integrability of the one-dimensional cubic nonlinear paraxial equation is exploited to give a complete global characterization of the weak limits of the oscillations in the defocusing case.


2015 ◽  
Vol 11 (07) ◽  
pp. 2037-2054 ◽  
Author(s):  
Ryan Broderick ◽  
Dmitry Kleinbock

The set of badly approximable m × n matrices is known to have Hausdorff dimension mn. Each such matrix comes with its own approximation constant c, and one can ask for the dimension of the set of badly approximable matrices with approximation constant greater than or equal to some fixed c. In the one-dimensional case, a very precise answer to this question is known. In this note, we obtain upper and lower bounds in higher dimensions. The lower bounds are established via the technique of Schmidt games, while for the upper bound we use homogeneous dynamics methods, namely exponential mixing of flows on the space of lattices.


2007 ◽  
Vol 17 (07) ◽  
pp. 1065-1093 ◽  
Author(s):  
LI CHEN ◽  
MICHAEL DREHER

We investigate the viscous model of quantum hydrodynamics in one and higher space dimensions. Exploiting the entropy dissipation method, we prove the exponential decay to the thermal equilibrium state in one, two, and three dimensions, provided that the domain is a box. Further, we show the local in time existence of a solution in the one-dimensional case; and in the case of higher dimensions under the assumption of periodic boundary conditions. Finally, we prove the global existence in a one-dimensional setting under additional assumptions.


1985 ◽  
Vol 40 (4) ◽  
pp. 379-382 ◽  
Author(s):  
R. Baltin

For the one-dimensional potential well with finite height V0( V0 > 0 or V0 < 0) the exact Green's function G is calculated by solving the differential equation. The poles of G in the complex energy plane are shown to coincide with the solutions to the Schrödinger eigenvalue equation for this potential. The well-known Green's functions for the special cases of the free particle and of the particle in an infinitely high potential box are recovered.


Sign in / Sign up

Export Citation Format

Share Document